K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2020

Sao chép

AH
Akai Haruma
Giáo viên
14 tháng 7 2020

Lời giải:

Áp dụng BĐT dạng $|a|+|b|\geq |a+b|$ ta có:

$|x+1|+|x+5|=|-x-1|+|x+5|\geq |-x-1+x+5|=4$

$|x+2|+|x+4|=|-x-2|+|x+4|\geq |-x-2+x+4|=2$

$|x+3|\geq 0$

Cộng theo vế thu được: $M\geq 6$

Dấu "=" xảy ra khi \(\left\{\begin{matrix} -(x+1)(x+5)\geq 0\\ -(x+2)(x+4)\geq 0\\ x+3=0\end{matrix}\right.\Leftrightarrow x=-3\)

31 tháng 7 2015

Phá dấu giá trị tuyệt đối : 

\(\left|x+\frac{3}{5}\right|=x+\frac{3}{5}\) nếu  x \(\ge\) \(-\frac{3}{5}\) và \(\left|x+\frac{3}{5}\right|=-\left(x+\frac{3}{5}\right)\) nếu x  < \(-\frac{3}{5}\)

\(\left|x+\frac{1}{5}\right|=x+\frac{1}{5}\) nếu x \(\ge\) \(-\frac{1}{5}\) và \(\left|x+\frac{1}{5}\right|=-\left(x+\frac{1}{5}\right)\) nếu x < \(-\frac{1}{5}\)

|x + 3| = x + 3 nếu x \(\ge\) -3 và |x + 3| = - (x+3) nếu x < -3

Xét các khoảng như sau:

+) Nếu x < - 3 thì A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) - (x+3) = -x - \(\frac{3}{5}\) - x - \(\frac{1}{5}\) - x - 3 = -3x  \(-\frac{19}{5}\) > (-3). (-3)  \(-\frac{19}{5}\) = 26/5

+) Nếu -3 \(\le\) x < \(-\frac{3}{5}\) thì  A = \(-\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x + 3 = -x +  11/5  > - (-3/5) + 11/5 = 14/5

+) Nếu  \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\) => A = \(\left(x+\frac{3}{5}\right)\) \(-\left(x+\frac{1}{5}\right)\) + x+ 3 = x + \(\frac{17}{5}\) \(\ge\) (-3/5) + 17/5 = 14/5

+) Nếu x \(\ge\) \(-\frac{1}{5}\)=> A = \(\left(x+\frac{3}{5}\right)\) + \(\left(x+\frac{1}{5}\right)\) + x+ 3 = 3x + 19/5 \(\ge\) 3. (-1/5) + 19.5 = 16/5

Từ các trường  hợp trên => A nhỏ nhất bằng  14/5 khi  \(-\frac{3}{5}\) \(\le\) x < \(-\frac{1}{5}\)

 

8 tháng 4 2018

Ta có \(\left|2014-x\right|\ge0\)với mọi giá trị của x

\(\left|2015-x\right|\ge0\)với mọi giá trị của x

\(\left|2016-x\right|\ge0\)với mọi giá trị của x

=> \(\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge0\)với mọi giá trị x

=> GTNN của A là 0.

8 tháng 4 2018

Có I 2014 - x I + I 2016 - x I = I x - 2014 I + I 2016 - x I \(\ge\)I x - 2014 + 2016 - x I = 2

Dấu = xảy ra \(\Leftrightarrow\)(x - 2014)(2016 - x)\(\ge\)0

TH1: x- 2014\(\ge\)0 và 2016 - x\(\ge\)0

=> x\(\ge\) 2014 và x\(\le\)2016 ( chọn )

TH2: Làm tương tự => loại

Có I 2015 -x I \(\ge\)

Dấu = xảy ra khi x = 2015

Vậy A min = 2 khi x = 2015

7 tháng 11 2019

Ta có:

|x−2015|+|x−2016|+|x−2017||x−2015|+|x−2016|+|x−2017|

=|x−2016|+|x−2015|+|x−2017|=|x−2016|+|x−2015|+|x−2017|

=|x−2016|+(|x−2015|+|x−2017|)=|x−2016|+(|x−2015|+|x−2017|)

∗)∗) Áp dụng BĐT |a|+|b|≥|a+b||a|+|b|≥|a+b| ta có:

|x−2015|+|x−2017|=|x−2015|+|x−2017|= |x−2015|+|2017−x||x−2015|+|2017−x|

≥|x−2015+2017−x|=|2|=2≥|x−2015+2017−x|=|2|=2

∗)∗) Dễ thấy: |x−2016|≥0∀x|x−2016|≥0∀x

⇔|x−2015|+|x−2016|+|x−2017|⇔|x−2015|+|x−2016|+|x−2017| ≥2≥2

Đẳng thức xảy ra ⇔⎧⎩⎨⎪⎪x−2015≥0x−2016=0x−2017≤0⇔⎧⎩⎨⎪⎪x≥2015x=2016x≤2017⇔{x−2015≥0x−2016=0x−2017≤0⇔{x≥2015x=2016x≤2017 ⇔x=2016⇔x=2016

Vậy GTNNGTNN của biểu thức là 2⇔x=2016

7 tháng 11 2019

Ta có:

|x − 2015| + |x − 2016| + |x − 2017|

= |x − 2016| + |x − 2015| + |x - 2017|

= |x − 2016|+(| x− 2015| + |x − 2017|)

∗)∗) Áp dụng BĐT |a| + |b| ≥ |a + b|, ta có:

|x − 2015|+|x − 2017| = |x − 2015|+|2017 − x|

≥ |x − 2015 + 2017 − x| = |2| = 2

∗) Dễ thấy: |x − 2016| ≥ 0 ∀ x

⇔|x − 2015| + |x − 2016| + |x − 2017|

Đẳng thức xảy ra ⇔x−2015≥0

x−2016=0

x−2017≤0 ⇔x≥2015 (Loại)

x=2016 (TM)

x≤2017 (Loại)

Vậy x=2016

26 tháng 10 2016

a) \(A=\left|x-1\right|+\left|x-2\right|+2016\)

\(=\left|x-1\right|+\left|2-x\right|+2016\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

=> \(\left|x-1\right|+\left|2-x\right|+2016\ge1+2016=2017\)

Vậy GTNN của A là 2017 khi \(\begin{cases}x-1\ge0\\2-x\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le2\end{cases}\)\(\Leftrightarrow1\le x\le2\)

b) \(B=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)

Có: \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\ge\left|x-1+3-x\right|=2\) (1)

Ta lại có: \(\left|x-2\right|\ge0\) (2)

Từ (1)(2) suy ra: \(B\ge2\)

Vậy GTNN của B là 1 khi \(\begin{cases}x-1\ge0\\3-x\ge0\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\le3\\x=2\end{cases}\)\(\Leftrightarrow\begin{cases}1\le x\le3\\x=2\end{cases}\)\(\Leftrightarrow x=2\)

24 tháng 2 2017

a) Ta có:

\(\left|x-1\right|+\left|x-2\right|=\left|x-1\right|+\left|2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge\left|x-1+2-x\right|\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|+2016\ge\left|x-1+2-x\right|+2016\)

hay \(A\ge\left|1\right|+2016=1+2016=2017\)

=> \(A\ge2017\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Vậy với \(x\in\left\{1;2\right\}\) thì A đạt GTNN và A=2017.

24 tháng 2 2017

b) Ta có:

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\)

hay \(B=\left|x-1\right|+\left|x-2\right|+\left|3-x\right|\ge\left|x-1+x-2+3-x\right|\)

\(\Rightarrow B\ge\left|x\right|\)

Dấu "=" xảy ra khi \(\left[\begin{matrix}x-1=0\\x-2=0\\x-3=0\end{matrix}\right.\Rightarrow\left[\begin{matrix}x=1\\x=2\\x=3\end{matrix}\right.\) (1)

Để B nhỏ nhất

=> |x| phải nhỏ nhất (2)

Từ (1) và (2)

=> x=1

khi đó:

B=|x|=|1|=1

Vậy với x=1 thì B đạt GTNN và B=1.

28 tháng 3 2017

2016

28 tháng 3 2017

minP=2

6 tháng 6 2017

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)

Để A nhỏ nhất thì \(\dfrac{1}{\left|x-2016\right|+2018}\) lớn nhất thì \(\left|x-2016\right|+2018\) nhỏ nhất

Ta có: \(\left|x-2016\right|\ge0\)

\(\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow A=1-\dfrac{1}{\left|x-2016\right|+2018}\ge1-\dfrac{1}{2018}=\dfrac{2017}{2018}\)

Dấu " = " khi \(\left|x-2016\right|=0\Rightarrow x=2016\)

Vậy \(MIN_A=\dfrac{2017}{2018}\) khi x = 2016

6 tháng 6 2017

Ta có :

\(A=\dfrac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\dfrac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\dfrac{1}{\left|x-2016\right|+2018}\)\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)

\(\Rightarrow\dfrac{1}{\left|x-2016\right|+2018}\le\dfrac{1}{2018}\)

\(\Rightarrow1-\dfrac{1}{\left|x-2016\right|+2018}\ge\dfrac{2017}{2018}\)

\(\Rightarrow A_{min}=\dfrac{2017}{2018}\)

<=> |x - 2016| = 0

<=> x = 2016