K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

\(A=\left(x-4\sqrt{x}+4\right)-2024=\left(\sqrt{x}-2\right)^2-2024\ge-2024\\ A_{min}=-2024\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)

7 tháng 2 2021

Ta có A = 5x2 - 2xy + 2y2 - 4x + 2y + 3

=> 2A = 10x2 - 4xy + 4y2 - 8x + 4y + 6

= (x2 - 4xy + 4y2) - 2(x - 2y) + 1 + 9x2 - 6x + 1 + 4

\(\left(x-2y\right)^2-2\left(x-2y\right)+1+9\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+4\)

\(=\left(x-2y-1\right)^2+9\left(x-\frac{1}{3}\right)^2+4\)\(\ge4\)

=> A \(\ge\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-2y-=0\\x-\frac{1}{3}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2y=1\\x=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{3}\\x=\frac{1}{3}\end{cases}}\)

Vậy khi x = 1/3 ; y = -1/3 thì A đạt GTNN

7 tháng 2 2021

\(A=5x^2+2y^2-2xy-4x+2y\)\(+3\)

\(=\left(x^2-2xy+y^2\right)+\)\(\left(4x^2-4x+1\right)+\)\(\left(y^2+2y+1\right)+1\)

\(Tacó\)

7 tháng 8 2016

dễ dàng pt đc \(A=\frac{4\left(x^2+2x+5\right)^2+256}{x^2+2x+5}=4\left(x^2+2x+5\right)+\frac{256}{x^2+2x+5}\ge64\)
Dấu = xảy ra khi \(4\left(x^2+2x+5\right)=\frac{256}{x^2+2x+5}\Rightarrow x^2+2x+5=8\Leftrightarrow x^2+2x-3=0\)
\(\Rightarrow x=1,x=-3\)

24 tháng 10 2017

mk ko bt 123

1 tháng 11 2020

\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)

\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)

=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2

Đề sai à --

5 tháng 11 2020

kkk. thế mới hỏi chứ. đề đấy: đố giải được

20 tháng 9 2017

Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(A=\sqrt{x-1}+\sqrt{9-x}\)

\(\ge\sqrt{x-1+9-x}=\sqrt{8}\)

Xảy ra khi \(x=1;x=9\)

NV
30 tháng 7 2021

\(P=2016+\sqrt{\left(2x-1\right)^2+4}\ge2016+\sqrt{4}=2018\)

Dấu "=" xảy ra khi \(2x-1=0\Leftrightarrow x=\dfrac{1}{2}\)

30 tháng 7 2021

Ta có: \(4x^2-4x+5=4x^2-4x+1+4=\left(2x-1\right)^2+4\ge4\)

\(\Rightarrow\sqrt{4x^2-4x+5}\ge2\Rightarrow P\ge2016+2=2018\)

\(\Rightarrow P_{min}=2018\) khi \(x=\dfrac{1}{2}\)