K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2017

\(\frac{5x^2-8x+8}{2x^2}=\frac{10x^2-16x+16}{4x^2}\)

\(=\frac{4x^2-16x+16+6x^2}{4x^2}=\frac{\left(2x-4\right)^2}{4x^2}+\frac{6}{4}\)\(\ge\)1,5

Dấu = xảy ra khi 2x-4= 0 => x = 2

Mk giải hơi tắt bn cố gắng suy nghĩ nha

24 tháng 5 2015

a)4x2-4x+3

=[(2x)2-4x+1]+2

=(2x+1)2+2 \(\ge\)2 với mọi x

Vậy GTNN của 4x2-4x+3 là 2 tại 

(2x+1)2+2=2

<=>(2x+1)2     =0

<=>2x+1       =0

<=>x             =\(\frac{-1}{2}\)

b)-x2+2x-3

=(-x2+2x-1)-2

= -(x2-2x+1)-2

=-(x-1)2-2 \(\le\)-2

Vậy GTLN của -x2+2x-3 là -2 tại :

-(x-1)2-2=-2

<=>-(x-1)2  =0

<=>x-1      =0

<=>x         =1

19 tháng 7 2016

\(A=x^2-6x+11=x^2-2.x.3+3^2+2\)

\(A=\left(x-3\right)^2+2\)

\(\left(x-3\right)^2\ge0\)với mọi \(x\in R\)

nên \(\left(x-3\right)^2+2\ge2\)với mọi x\(x\in R\)

Vậy \(Min_A=2\)khi đó \(x=3\)

7 tháng 7 2017

1,A=(x2-6x+9)+2

=(x-3)2+2

ta thấy (x-3)2>=0 với mọi x

=>(x-3)2+2>=2 với mọi x

hay A>=2

dấu "="xảy ra x-3=0<=>x=3

vậy MinA=2 khi x=3

ý b sai đầu bài bạn nhé

C=-(x2-5x)

=-(x2-5x+25/4)+25/4

=-(x-5/2)2+25/4

ta thấy -(x-5/2)2<=0 với mọi x

=>-(x-5/2)2+25/4 <=25/4 với mọi x

hay C<=25/4

dấu "=" xảy ra khi x-5/2=0<=>x=5/2

vậy MaxC=25/4 khi x=5/2

k mk nha

7 tháng 7 2017

Ta có : A = x2 - 6x + 11

<=> A = x2 - 6x + 9 + 2 

<=> A = (x - 3)2 + 2

Mà (x - 3)2 \(\ge0\forall x\)

Nên A =  (x - 3)2 + 2 \(\ge2\forall x\)

Vậy Amin = 2 , dấu "=" xảy ra khi và chỉ khi x = 3

22 tháng 8 2016

a có A = x^2+2x+5 =(x^2+2x+1)+4=(x+1)^2+4 \(\ge\)4

 Dấu bằng xảy ra <=>x+1=0 <=>x=-1

22 tháng 8 2016

\(A=x^2+2x+5=x^2+2.x+1+4=\left(x+1\right)^2+4\ge4\)

Đẳng thức xảy ra khi: \(x+1=0\Rightarrow x=-1\)

Vậy giá trị nhỏ nhất của A là 4 khi x= -1

1 tháng 7 2015

\(A=\left(4x^2-2.\frac{1}{2}2.x+\frac{1}{4}\right)+\frac{47}{4}=\left(2x+\frac{1}{2}\right)^2+\frac{47}{4}\ge\frac{47}{4}\Rightarrow MinA=\frac{47}{4}\Leftrightarrow x=-\frac{1}{4}\)

24 tháng 10 2019

\(A=2x^2+10x-1\)

\(=2\left(x^2+5x-\frac{1}{2}\right)\)

\(=2\left(x^2+2x.\frac{5}{2}+\frac{25}{4}-\frac{27}{4}\right)\)

\(=2\left[\left(x^2+\frac{5}{2}\right)^2-\frac{27}{4}\right]\)

\(=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)(Vì \(\left(x+\frac{5}{2}\right)^2\ge0\))

Dấy " = " xảy ra khi :

\(x+\frac{5}{2}=0\)

\(\Leftrightarrow x=\frac{-5}{2}\)

Vậy GTNN của A là \(\frac{-27}{2}\)khi \(x=\frac{-5}{2}\)

          Hk tốt ~