Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x-4\right)\left(x-7\right)\left(x-5\right)\left(x-6\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+29-1\right)\left(x^2-11x+29+1\right)=1680\\ \)
Đặt \(x^2-11x+29=t\), ta đc \(\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1=1680\Leftrightarrow t^2=1681\Leftrightarrow t=\pm41\)
Với \(t=41\Leftrightarrow x^2-11x+28=40\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-1\end{matrix}\right.\)
Với \(t=-41\Leftrightarrow x^2-11x+30=-40\)(vô no)
Vậy.....
c) \(x^4-7x^3+14x^2-7x+1=0\\ \Leftrightarrow x^2-7x+14-\frac{7}{x}+\frac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\frac{1}{x^2}\right)-7\left(x+\frac{1}{x}\right)+14=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
Ta đc \(t^2-2-7t+14=0\Leftrightarrow t^2-7t+12=0\)
\(\Rightarrow\left[{}\begin{matrix}t=4\\t=3\end{matrix}\right.\)
B tự giải tiếp nha
a. \(\sqrt{x+8}=x+2\)
đk x ≥ -2
⇔ \(\left(\sqrt{x+8}\right)^2\) = (x + 2 )2
⇔ x + 8 = x2 + 4x + 4
⇔ x2 + 3x - 4 = 0
⇔ (x - 1)(x + 4) = 0
⇔\(\left[{}\begin{matrix}x=1\\x=-4\left(L\right)\end{matrix}\right.\)
S = \(\left\{1\right\}\)
c: \(\Leftrightarrow\left\{{}\begin{matrix}x>=\dfrac{7}{3}\\9x^2-42x+49-5x-3=0\end{matrix}\right.\)
=>x>=7/3 và 9x^2-47x+46=0
=>\(x=\dfrac{47+\sqrt{553}}{18}\)
d: \(\left\{{}\begin{matrix}x>=-\dfrac{1}{3}\\3x^2-2x-1=9x^2+6x+1\end{matrix}\right.\)
=>x>=-1/3 và -6x^2-8x-2=0
=>x=-1/3
e: =>3x-5=16
=>3x=21
=>x=7
g: =>x<=3 và x^2+x+1=x^2-6x+9
=>x=8/7
2. đặt \(\sqrt[3]{2-x}=a\) và \(\sqrt[3]{7+x}=b\)
thì ta có hệ pt \(\int_{a^3+b^3=9}^{a^2+b^2-ab=3}\) <=>\(\int_{a^2-ab+b^2=3}^{\left(a+b\right)\left(a^2-ab+b^2\right)=9}\)<=>\(\int_{a^3+b^3=9}^{a+b=9:3=3}\)
đến đây bạn tự giải nốt nhé
1. \(\sqrt{5x-1}-\sqrt{3x-2}-\sqrt{x-1}=0\) (ĐKXĐ : \(x\ge1\)
\(\Leftrightarrow\left(\sqrt{5x-1}-3\right)-\left(\sqrt{3x-2}-2\right)-\left(\sqrt{x-1}-1\right)=0\)
\(\Leftrightarrow\left(\frac{5x-1-3^2}{\sqrt{5x-1}+3}\right)-\left(\frac{3x-2-2^2}{\sqrt{3x-2}+2}\right)-\left(\frac{x-1-1^2}{\sqrt{x-1}+1}\right)=0\)
\(\Leftrightarrow\frac{5\left(x-2\right)}{\sqrt{5x-1}+3}-\frac{3\left(x-2\right)}{\sqrt{3x-2}+2}-\frac{x-2}{\sqrt{x-1}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(\frac{5}{\sqrt{5x-1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}\right)=0\)
- TH1: Với \(\frac{5}{\sqrt{5x-1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}=0\). Vì \(x\ge1\) nên \(\frac{5}{\sqrt{5x-1}+3}-\frac{3}{\sqrt{3x-2}+2}-\frac{1}{\sqrt{x-1}+1}< 0\). Dấu đẳng thức không xảy ra nên phương trình này vô nghiệm.
- Với x - 2 = 0 => x = 2 (TMĐK)
Vậy phương trình có nghiệm x = 2
H = x(x+1)(x+2)(x+3)
=x(x+3)(x+1)(x+2)
=(x2+3x)(x2+3x+2)
Đặt t=x2+3x ta có:
t(t+2)=t2-2t+1-1=(t-1)2-1\(\ge1\)
Dấu = khi \(t=1\Rightarrow x^2+3x=1\Rightarrow\)\(x_{1,2}=\frac{-3\pm\sqrt{13}}{2}\)
Ta có: H = x(x+3)(x+1)(x+2) H = (x2+ 3x)(x2 + 3x +2) H = (x2+3x)2 + 2(x2+3x) H = (x2+3x)2 + 2(x2+3x)+1 – 1 H = (x2 + 3x +1)2 – 1 ⇔H ≥ - 1 , Dấu ‘ = ’ xảy ra khi x2 + 3x +1 = 0 ⇔x =-3+căn5 chia 2 Vậy giá trị nhỏ nhất của H là -1 khi x =-3+căn5 chia 2
\(1+\sqrt{x^2-4x+3}-x=0\)
\(ĐK:\left\{{}\begin{matrix}\sqrt{x^2-4x+3\ge0}\\x-1\ge0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x\ge3\end{matrix}\right.\)
\(PT\Leftrightarrow\sqrt{x^2-4x+3}-\left(x-1\right)=0\)
\(\Leftrightarrow\frac{x^2-4x+3-\left(x-1\right)^2}{\sqrt{x^2-4x+3}+\left(x-1\right)}=0\)
\(\Leftrightarrow2-2x=0\Rightarrow x=1\left(tm\right)\)