Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-7\right)\right].\left[\left(x^2-3\right)\left(x^2-5\right)\right]\le0\)
\(\Leftrightarrow\left(x^4-8x^2+7\right)\left(x^4-8x^2+15\right)\le0\)
Đặt \(x^4-8x^2=t\Rightarrow\left(t+17\right)\left(t+15\right)\le0\Rightarrow\orbr{\begin{cases}t\le-15\\t\ge-7\end{cases}}\)
Với \(t\le-15\Rightarrow x^4-8x^2+15\le0\Rightarrow3\le x^2\le5\Rightarrow\orbr{\begin{cases}\sqrt{3}\le x\le\sqrt{5}\\-\sqrt{5}\le x\le-\sqrt{3}\end{cases}}\)
Với \(t\ge-7\Rightarrow x^4-8x^2+7\ge0\Rightarrow\orbr{\begin{cases}x^2\le1\\x^2\ge7\end{cases}\Rightarrow\orbr{\begin{cases}0\le x\le1\\x\ge\sqrt{7};x\le-\sqrt{7}\end{cases}}}\)
Bài 1 :
\(\frac{x-1}{x-5}=\frac{6}{7}\Leftrightarrow7x-7=6x-30\)
\(\Leftrightarrow x=-23\)
\(\frac{x-2}{x-1}=\frac{x+4}{x+7}\)ĐK : \(x\ne1;-7\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2+5x-14=x^2+3x-4\)
\(\Leftrightarrow2x-10=0\Leftrightarrow x=5\)
a) Ta có : ( x + 1 ).( 3 - x ) > 0
Th1 : \(\hept{\begin{cases}x+1>0\\3-x>0\end{cases}\Rightarrow\hept{\begin{cases}x>-1\\x>3\end{cases}\Rightarrow}x>3}\)
Th2 : \(\hept{\begin{cases}x+1< 0\\3-x< 0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x< 3\end{cases}\Rightarrow}x< -1}\)