Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm:
Ta có: \(x=2019\Rightarrow2020=x+1\)
Thay vào ta được:
\(f\left(2019\right)=x^{99}-\left(x+1\right)x^{98}+\left(x+1\right)x^{97}-\left(x+1\right)x^{96}+...-\left(x+1\right)x^2+\left(x+1\right)x-1\)
\(f\left(2019\right)=x^{99}-x^{99}-x^{98}+x^{98}+x^{97}-x^{97}-x^{96}+...-x^3-x^2+x^2+x-1\)
\(f\left(2019\right)=x-1\)
Thay \(x=2019\)vào ta được:
\(f\left(2019\right)=2019-1=2018\)
Vậy f(2019) = 2018
\(f\left(x\right)=x^{99}-2020x^{98}+2020x^{97}-2020x^{96}+...-2020x^2+2020x-1\)
\(f\left(2019\right)=2019^{99}-2020.2019^{98}+2020.2019^{97}-...+2020.2019-1\)
Xét \(2020.2019^{98}=2019^{99}+2019^{98};2020.2019^{97}=2019^{98}+2019^{97}\)
\(2020.2019^{96}=2019^{97}+2019^{96};...;2020.2019=2019^2+2019\)
\(\Rightarrow f\left(2019\right)=2019^{99}-2019^{99}-2019^{98}+2019^{97}-2019^{97}-...+2019^2+2019-1\)
\(\Rightarrow f\left(2019\right)=2019-1=2018\). Vậy \(f\left(2019\right)=2018\)
f(x) = \(\left(x^6-2019x^5\right)-\left(x^5-2019x^4\right)+\left(x^4-2019x^3\right)-\left(x^3-2019x^2\right)+\left(x^2-2019x\right)-\left(x-2019\right)+1\)
= \(x^5\left(x-2019\right)-x^4\left(x-2019\right)+x^3\left(x-2019\right)-x^2\left(x-2019\right)+x\left(x-2019\right)-\left(x-2019\right)+1\)
Thay x = 2019 vào f(x), ta có:
f(2019) = 0 + 0 + 0 + 0 + 0 +0 + 1 = 1
b) Ta có : \(x=2019\) \(\Rightarrow x+1=2020\) Thay vào biểu thức ta được :
( Chỗ nào có 2020 thay thành x + 1 )
\(x^9-\left(x+1\right).x^8+\left(x+1\right).x^7-....-\left(x+1\right).x^2+\left(x+1\right).x\)
\(=x^9-x^9-x^8+x^8+x^7-...-x^3-x^2+x^2+x\)
\(=x\\ \)
\(=2019\)
Vậy : biểu thức trên bằng 2019 với x = 2019.
\(f\left(2019\right)=x^{100}-\left(2019+1\right)x^{99}+\left(2019+1\right)x^{98}-....+\left(2019+1\right)x^2-\left(2019+1\right)x+2000\)
\(=x^{100}-\left(x+1\right)x^{99}+\left(x+1\right)x^{98}-...+\left(x+1\right)x^2-\left(x+1\right)x+2000\)
\(=x^{100}-x^{100}-x^{99}+x^{99}+x^{98}-...+x^3+x^2-x^2-x+2000\)
\(=-x+2000=-2019+2000\)
\(=-19\)
\(\left|2020x^2+4040x\right|=\left|x+2\right|\)
\(\Leftrightarrow\left|2020x\left(x+2\right)\right|=\left|x+2\right|\)
\(\Leftrightarrow\left|x+2\right|\left|2020x\right|=\left|x+2\right|\)
\(\Leftrightarrow\left|x+2\right|\left|2020x\right|-\left|x+2\right|=0\)
\(\Leftrightarrow\left|x+2\right|\left(\left|2020x\right|-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left|x+2\right|=0\\\left|2020x\right|-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-2\\x\in\left\{\frac{1}{2020};\frac{-1}{2020}\right\}\end{cases}}\)
Dễ thấy \(VT\ge0\Rightarrow2020x\ge0\Leftrightarrow x\ge0\)
\(\Rightarrow pt\Leftrightarrow2019x+\frac{2019.2020}{2}=2020x\)
\(\Leftrightarrow x=2019.1010\)