Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mấy cái này đơn dãng vô cùng nhưng có đều bn ra đề dài quá nha
a) \(3x+4\ge7\Leftrightarrow3x\ge7-4\Leftrightarrow3x\ge3\Leftrightarrow x\ge1\) vậy \(x\ge1\)
b) \(-5x+1< 11\Leftrightarrow-5x< 11-1\Leftrightarrow-5x< 10\Leftrightarrow x>\dfrac{10}{-5}\)
\(\Leftrightarrow x>-2\) vậy \(x>-2\)
c) \(\dfrac{5}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\) vậy \(x< 3\)
d) \(\dfrac{-7}{2-x}\ge0\Leftrightarrow2-x\le0\Leftrightarrow x\ge2\) vậy \(x\ge2\)
e) \(x^2+4x>0\Leftrightarrow x\left(x+4\right)>0\) \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x+4>0\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x+4< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>0\\x>-4\end{matrix}\right.\\\left[{}\begin{matrix}x< 0\\x< -4\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x>0\\x< -4\end{matrix}\right.\) vậy \(x>0\) hoặc \(x< -4\)
f) \(\dfrac{x-2}{x-6}< 0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x-2>0\\x-6>0\end{matrix}\right.\\\left[{}\begin{matrix}x-2< 0\\x-6< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>2\\x>6\end{matrix}\right.\\\left[{}\begin{matrix}x< 2\\x< 6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>6\\x< 2\end{matrix}\right.\)
vậy \(x>6\) hoặc \(x< 2\)
g) \(\left(x-1\right)\left(x+2\right)\left(3-x\right)< 0\Leftrightarrow-\left[\left(x-1\right)\left(x+2\right)\left(x-3\right)\right]< 0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-3\right)>0\)
th1: 3 số hạng đều dương : \(\Leftrightarrow\left[{}\begin{matrix}x-1>0\\x+2>0\\x-3>0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x>1\\x>-2\\x>3\end{matrix}\right.\) \(\Rightarrow x>3\)
th2: 2 âm 1 dương : (vì trong 3 số hạng ta có : \(\left(x+2\right)\) lớn nhất \(\Rightarrow\left(x+2\right)\) dương)
\(\Leftrightarrow\left[{}\begin{matrix}x-1< 0\\x+2>0\\x-3< 0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x< 1\\x>-2\\x< 3\end{matrix}\right.\) \(\Rightarrow-2< x< 1\)
vậy \(x>3\) hoặc \(-2< x< 1\)
h) \(\dfrac{x^2-1}{x}>0\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2-1>0\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2-1< 0\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x^2>1\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}x^2< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\\x>0\end{matrix}\right.\\\left[{}\begin{matrix}-1< x< 1\\x< 0\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x>1\\-1< x< 0\end{matrix}\right.\) vậy \(x>1\) hoặc \(-1< x< 0\)
i) \(x^2+x-2< 0\Leftrightarrow x^2+x+\dfrac{1}{4}-\dfrac{9}{4}< 0\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2-\dfrac{9}{4}< 0\)
\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2< \dfrac{9}{4}\Leftrightarrow\dfrac{-3}{2}< \left(x+\dfrac{1}{2}\right)< \dfrac{3}{2}\Leftrightarrow-2< x< 1\)
vậy \(-2< x< 1\)
Mysterious Person, Đoàn Đức Hiếu, Nguyễn Đình Dũng , ... giúp mình!
a/ \(\left(x+1\right)\left(x-2\right)< 0\)
TH1:\(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< -1\\x>2\end{matrix}\right.\) (vô lý)
TH2:\(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>-1\\x< 2\end{matrix}\right.\)\(\Rightarrow-1< x< 2\)
Vậy.........
b/ \(\left(x-3\right)\left(x-4\right)>0\)
TH1:\(\left\{{}\begin{matrix}x-3>0\\x-4>0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x>3\\x>4\end{matrix}\right.\)\(\Rightarrow x>4\)
TH2:\(\left\{{}\begin{matrix}x-3< 0\\x-4< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x< 3\\x< 4\end{matrix}\right.\)\(\Rightarrow x< 3\)
Vậy...............
c/ \(\dfrac{1}{2}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)< x< \dfrac{1}{48}-\left(\dfrac{1}{16}-\dfrac{1}{6}\right)\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{7}{12}< x< \dfrac{1}{48}-\dfrac{1}{8}\)
\(\Rightarrow\dfrac{-1}{12}< x< -\dfrac{5}{48}\)
Vậy...............
Để ( x + 1 ) ( x - 2 ) < 0
=> x + 1 và x - 2 phải khác dấu mà x + 1 > x + 2
=> x + 1 dương x + 2 âm
Tức là x + 1 > 0 => x > - 1 và x - 2 < 0 => x < 2
a) \(\left|x-\dfrac{5}{3}\right|< \dfrac{1}{3}\)
\(\Rightarrow\dfrac{-1}{3}< x-\dfrac{5}{3}< \dfrac{1}{3}\)
\(\Rightarrow\dfrac{-1}{3}+\dfrac{5}{3}< x-\dfrac{5}{3}+\dfrac{5}{3}< \dfrac{1}{3}+\dfrac{5}{3}\)
\(\Rightarrow\dfrac{4}{3}< x< 2\)
b) \(\left|x+\dfrac{11}{2}\right|>\left|-5,5\right|=5,5\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{11}{2}< 5,5\\x+\dfrac{11}{2}>5,5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 5,5-\dfrac{11}{2}=0\\x>5,5-\dfrac{11}{2}=0\end{matrix}\right.\)
=> Với x khác 0 thì thõa mãn đề bài
c) \(\dfrac{2}{5}< \left|x-\dfrac{7}{5}\right|< \dfrac{3}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{2}{5}< x-\dfrac{7}{5}< \dfrac{3}{5}\\-\dfrac{2}{5}< x-\dfrac{7}{5}< -\dfrac{3}{5}\end{matrix}\right.\)
Ta thấy trường hợp 2 là trường hợp không thể xảy ra
=> Loại
Vậy \(\dfrac{2}{5}< x-\dfrac{7}{5}< \dfrac{3}{5}\)
\(\Rightarrow\dfrac{2}{5}+\dfrac{7}{5}< x< \dfrac{3}{5}+\dfrac{7}{5}\)
\(\Rightarrow\dfrac{9}{5}< x< 2\) (nhận)
p/s : làm đại nha , ko bik đúng sai
a: x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
A=1/7-x-x-3/5+4/5=-2x+12/35
b: B=|x-1/7|+|x+3/5|-1/3
x>-3/5 nên x+3/5>0
x<1/7 nên x-1/7<0
B=1/7-x+3/5+x-1/3=43/105
\(\frac{1}{4}+\frac{8}{9}\le\frac{x}{36}\le1-\left(\frac{3}{8}-\frac{5}{6}\right)\)
<=> \(\frac{41}{36}\le\frac{x}{36}\le\frac{35}{24}\)
<=> \(\frac{82}{72}\le\frac{2x}{72}\le\frac{105}{72}\)
<=> \(82\le2x\le105\)
<=> \(41\le x\le52,5\)
Do \(x\in N\)nên \(x=\left\{x\in N|41\le x\le52,5\right\}\)
Giải:
a) \(\dfrac{1}{2}< x< \dfrac{7}{8}\)
\(\Leftrightarrow\dfrac{12}{24}< x< \dfrac{21}{24}\)
\(\Leftrightarrow x\in\left\{\dfrac{13}{24};\dfrac{14}{24};\dfrac{15}{24};\dfrac{16}{24};\dfrac{17}{24};\dfrac{18}{24};\dfrac{19}{24};\dfrac{20}{24}\right\}\)
Mà x là số hữu tỉ có mẫu là 24
\(\Leftrightarrow x=\left\{\dfrac{13}{24};\dfrac{17}{24};\dfrac{19}{24}\right\}\)
Vậy ...
b) \(\dfrac{3}{5}< x< \dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{12}{20}< x< \dfrac{12}{15}\)
\(\Leftrightarrow x\in\left\{\dfrac{12}{19};\dfrac{12}{18};\dfrac{12}{17};\dfrac{12}{16}\right\}\)
Mà x là số hữu tỉ có tử là 12
\(\Leftrightarrow x=\left\{\dfrac{12}{19};\dfrac{12}{17}\right\}\)
Vậy ...
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
a: \(\Leftrightarrow-\dfrac{23}{5}\cdot\dfrac{50}{23}< x< \dfrac{-13}{5}:\dfrac{21}{15}=\dfrac{-13}{5}\cdot\dfrac{5}{7}=\dfrac{-13}{7}\)
=>-10<x<-13/7
hay \(x\in\left\{-9;-8;-7;-6;-5;-4;-3;-2\right\}\)
b: \(\Leftrightarrow-\dfrac{13}{3}\cdot\dfrac{1}{3}< x< \dfrac{-2}{3}\cdot\dfrac{4-3-9}{12}\)
\(\Leftrightarrow-\dfrac{13}{9}< x< \dfrac{4}{9}\)
mà x là số nguyên
nên \(x\in\left\{-1;0\right\}\)
Ta có :
\(x-\dfrac{8}{5}< -6\\ \Rightarrow x< -6+\dfrac{8}{5}\\ \Rightarrow x< -\dfrac{22}{5}=-4\dfrac{2}{5}\\ \Rightarrow-6< x< -1\dfrac{2}{5}\\ \Rightarrow x=-5\)
Vậy...
ở dòng -6<x<-1\(\dfrac{2}{5}\) thì số -1\(\dfrac{2}{5}\) lấy đâu ra thế bạn