Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
Bài giải
Ta có : \(\left|x\right|+\left|x+1\right|=2019\)
\(\Rightarrow\orbr{\begin{cases}x\ge0\text{ }\Leftrightarrow\text{ }\left|x\right|+\left|x+1\right|=x+x+1=2019\\x< 0\text{ }\Leftrightarrow\text{ }\left|x\right|+\left|x+1\right|=-x+\left(-x\right)+1=2019\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}2x+1=2019\\2\left(-x\right)+1=2019\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}2x=2019-1=2018\\2\left(-x\right)=2019-1=2018\end{cases}}\) \(\Rightarrow\orbr{\begin{cases}x=2018\text{ : }2=1009\\x=2018\text{ : }\left(-2\right)=-1009\end{cases}}\)
\(\Rightarrow\text{ }x\in\left\{1009\text{ ; }-1009\right\}\)
Sai thì thôi ! Thông cảm nha
Câu 2 :
Bài giải
\(\left|x\right|+\left|x+1\right|=0\)
Mà \(\hept{\begin{cases}\left|x\right|\ge0\\\left|x+1\right|\ge0\end{cases}}\)
\(\Rightarrow\) Dấu "=" xảy ra khi \(\left|x+1\right|=0\)
\(\Rightarrow\text{ }x+1=0\)
\(\Rightarrow\text{ }x=0-1=-1\)
Mà \(\left|-1\right|+\left|-1+1\right|\ne0\)
\(\Rightarrow\) Biểu thức sai
a) Ta có:
\(x-\left\{\left[-x-\left(x+3\right)\right]-\left[\left(x+2018\right)-\left(x+2019\right)\right]+21\right\}\)
\(=x-\left\{\left[-x-x-3\right]-\left[x+2018-x-2019\right]+21\right\}\)
\(=x-\left\{\left[-2x-3\right]-\left[2018-2019\right]+21\right\}\)
\(=x+2x+-3+1-21\)
\(=3x-23\)
=> \(3x-23=2020\)
\(3x=2020+23=2043\)
=> \(x=2043:3=681\)
Nhầm
\(=x-\left\{-2x-3+1+21\right\}\\ =x+2x+3-1-21\)
\(=3x-17\\ =>3x-17=2020\\ 3x=2020+17=2037\\ x=2037:3=679\)
\(\left|x-3y\right|^{2019}+\left|y+\text{4}\right|^{2020}=0\\ \)
mà \(\left|x-3y\right|\ge0\Rightarrow\left|x-3y\right|^{2019}\ge0\)
\(\left|y+4\right|\ge0\Rightarrow\left|y+4\right|^{2020}\ge0\)
=> phương trình xảy ra <=> \(\left|x-3y\right|=\left|y+4\right|=0\Rightarrow\hept{\begin{cases}y=-4\\x=-12\end{cases}}\)
\(\left|x-3y\right|^{2019}+\left|y+4\right|^{2020}=0\)
\(\text{Ta có : }\left|x-3y\right|^{2019}\ge0;\left|y+4\right|^{2019}\ge0\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|^{2019}=0\\\left|y+4\right|^{2020}=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left|x-3y\right|=0\\\left|y+4\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-3y=0\\y+4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3y\left(1\right)\\y=-4\left(2\right)\end{cases}}\)
\(\text{Thay (2) vào (1) }\Rightarrow x=-12\)
\(a)\) Ta có :
\(VP=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{2}{2017}+\frac{1}{2018}\)
\(VP=\left(\frac{2018}{1}-1-...-1\right)+\left(\frac{2017}{2}+1\right)+\left(\frac{2016}{3}+1\right)+...+\left(\frac{2}{2017}+1\right)+\left(\frac{1}{2018}+1\right)\)
\(VP=1+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2017}+\frac{2019}{2018}\)
\(VP=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\right)\)
Lại có :
\(VT=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right).x\)
\(\Rightarrow\)\(x=2019\)
Vậy \(x=2019\)
Chúc bạn học tốt ~
câu 1
A=-1
câu 2
\(\frac{x+1}{2}=\frac{8}{x+1}\)
\(\Rightarrow\left(x+1\right).\left(x+1\right)=8.2\)
\(\left(x+1\right).\left(x+1\right)=16\)
\(\left(x+1\right)^2=16\)
\(\Rightarrow x+1=4\)
vậy x=3
\(Th1:x-2019>0\)
\(x-2019-x+2019=0\)
\(0x=0\)
Vậy \(|x-2019|-x+2019=0\)với tất cả giá trị x
\(th2:x-2019< 0\)
\(-x+2019-x+2019=0\)
\(\Rightarrow2x=4038\)
\(\Rightarrow x=2019\)