Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1a) \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\\frac{3}{2}x+\frac{1}{2}=1-4x\end{cases}}\)
=> \(\orbr{\begin{cases}-\frac{5}{2}x=-\frac{3}{2}\\\frac{11}{2}x=\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{5}{3}\\x=\frac{1}{11}\end{cases}}\)
b) \(\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=>\(\left|\frac{5}{4}x-\frac{7}{2}\right|=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\orbr{\begin{cases}\frac{5}{4}x-\frac{7}{2}=\frac{5}{8}x+\frac{3}{5}\\\frac{5}{4}x-\frac{7}{2}=-\frac{5}{8}x-\frac{3}{5}\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{5}{8}x=\frac{41}{10}\\\frac{15}{8}x=\frac{29}{10}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c) TT
a, \(\left|\frac{3}{2}x+\frac{1}{2}\right|=\left|4x-1\right|\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}=4x-1\\-\frac{3}{2}x-\frac{1}{2}=4x-1\end{cases}}\)
=> \(\orbr{\begin{cases}\frac{3}{2}x+\frac{1}{2}-4x=-1\\-\frac{3}{2}x-\frac{1}{2}-4x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{5}\\x=\frac{1}{11}\end{cases}}\)
\(b,\left|\frac{5}{4}x-\frac{7}{2}\right|-\left|\frac{5}{8}x+\frac{3}{5}\right|=0\)
=> \(\left|\frac{5}{4}x-\frac{7}{2}\right|-0=\left|\frac{5}{8}x+\frac{3}{5}\right|\)
=> \(\frac{\left|5x-14\right|}{4}=\frac{\left|25x+24\right|}{40}\)
=> \(\frac{10(\left|5x-14\right|)}{40}=\frac{\left|25x+24\right|}{40}\)
=> \(\left|50x-140\right|=\left|25x+24\right|\)
=> \(\orbr{\begin{cases}50x-140=25x+24\\-50x+140=25x+24\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{164}{25}\\x=\frac{116}{75}\end{cases}}\)
c, \(\left|\frac{7}{5}x+\frac{2}{3}\right|=\left|\frac{4}{3}x-\frac{1}{4}\right|\)
=> \(\orbr{\begin{cases}\frac{7}{5}x+\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\\-\frac{7}{5}x-\frac{2}{3}=\frac{4}{3}x-\frac{1}{4}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{55}{4}\\x=-\frac{25}{164}\end{cases}}\)
Bài 2 : a. |2x - 5| = x + 1
TH1 : 2x - 5 = x + 1
=> 2x - 5 - x = 1
=> 2x - x - 5 = 1
=> 2x - x = 6
=> x = 6
TH2 : -2x + 5 = x + 1
=> -2x + 5 - x = 1
=> -2x - x + 5 = 1
=> -3x = -4
=> x = 4/3
Ba bài còn lại tương tự
a) \(\frac{2}{3x}-\frac{3}{12}=\frac{4}{5}-\left(\frac{7}{x}-2\right)\)
\(\frac{2}{3x}+\left(\frac{7}{x}-2\right)=\frac{4}{5}+\frac{3}{12}\)
\(\frac{2}{3x}+\frac{7}{x}-2=\frac{21}{20}\)
\(\frac{2}{3x}+\frac{7}{x}=\frac{61}{20}\)
\(\frac{2}{3x}+\frac{21}{3x}=\frac{61}{20}\)
\(\frac{23}{3x}=\frac{61}{20}\)
\(3x=\frac{460}{61}\)
\(x=\frac{460}{183}\)
b) \(\left(\frac{3}{2}-\frac{2}{-5}\right):x-\frac{1}{2}=\frac{3}{2}\)
\(\frac{19}{10}:x-\frac{1}{2}=\frac{3}{2}\)
\(\frac{19}{10}:x=2\)
\(x=\frac{19}{20}\)
a) Đặt \(x-1=a\)
\(pt\Leftrightarrow\frac{13}{a}+\frac{5}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2a}=\frac{6}{3a}\)
\(\Leftrightarrow\frac{31}{2}=2\)(vô lí)
Vậy pt vô nghiệm
a) \(\frac{13}{x-1}+\frac{5}{2x-2}=\frac{6}{3x-3}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{6}{3\left(x-1\right)}\)
\(\frac{13}{x-1}+\frac{5}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2\left(x-1\right)}=\frac{2}{x-1}\)
\(\frac{31}{2}=2\)
=> không có x thỏa mãn đề bài.
b) \(\frac{1}{x-1}+\frac{-2}{3}\left(\frac{3}{4}-\frac{6}{5}\right)=\frac{5}{2-2x}\)
\(\frac{1}{x-1}+\frac{-2}{3}.\frac{-9}{20}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}-\frac{-18}{60}=\frac{5}{2\left(1-x\right)}\)
\(\frac{1}{x-1}+\frac{3}{10}=\frac{5}{2\left(1-x\right)}\)
\(10\left(1-x\right)+3\left(x-1\right)\left(1-x\right)=25\left(x-1\right)\)
\(7-4x-3x^2=25x-25\)
\(7-4x-3x^2-25x+25=0\)
\(32-29x-3x^2=0\)
\(3x^2+29x-30=0\)
\(3x^2+32x-3x-32=0\)
\(x\left(3x+32\right)-\left(3x+32\right)=0\)
\(\left(3x+32\right)\left(x-1\right)=0\)
\(\orbr{\begin{cases}3x+32=0\\x-1=0\end{cases}}\)
\(\orbr{\begin{cases}x=-\frac{32}{3}\\x=1\end{cases}}\)
\(\left(4x+3\right)^2=\frac{2}{3}:6\)
\(\left(4x+3\right)^2=\frac{1}{9}\)
\(\left(4x+3\right)^2=\left(\frac{1}{3}\right)^2\)
\(\Rightarrow4x+3=\frac{1}{3}\)
\(4x=-\frac{8}{3}\)
\(x=-\frac{2}{3}\)
\(\frac{x}{y}=\frac{5}{3}\Rightarrow\frac{x}{5}=\frac{y}{3}\)
\(\Rightarrow\frac{x^2}{5^2}=\frac{y^2}{3^2}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x^2}{5^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{5^2+3^2}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow\hept{\begin{cases}x^2=\frac{50}{17}\\y^2=\frac{18}{17}\end{cases}}\) mà x,y là số tự nhiên nên ko có x,y thỏa mãn
Bài 2:
\(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{5}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{10}=\frac{y}{15}\\\frac{y}{15}=\frac{z}{21}\end{cases}}}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c dãy tỉ số bằng nhau:
Bạn tự làm nha
Bài 1 :
\(\frac{x}{y}=\frac{5}{3}\)
\(\Rightarrow\frac{x}{5}=\frac{y}{3}\)( từ đây ra được là x ; y cùng dấu )
\(\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2+y^2}{25+9}=\frac{4}{34}=\frac{2}{17}\)
\(\Rightarrow x\in\left\{-\frac{5\sqrt{34}}{17};\frac{5\sqrt{34}}{17}\right\}\)
\(y\in\left\{-\frac{3\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right\}\)
Mà x ; y cùng dấu nên :
\(\left(x;y\right)\in\left\{\left(\frac{5\sqrt{34}}{17};\frac{3\sqrt{34}}{17}\right);\left(\frac{-5\sqrt{34}}{17};\frac{-3\sqrt{34}}{17}\right)\right\}\)
Bài 2 :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{15}=\frac{z}{21}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x+y+z}{10+15+21}=\frac{138}{46}=3\)
\(\frac{x}{10}=3\Rightarrow x=30\)
\(\frac{y}{15}=3\Rightarrow y=45\)
\(\frac{z}{21}=3\Rightarrow z=63\)
Bài 1:
a) Cách 1: ta có: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}\)
ADTCDTSBN
có: \(\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-6}{-2}=3\)
=> x/3 = 3 => x = 9
y/5 = 3 => y = 15
KL:....
Cách 2:
ta có: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=3k\\y=5k\end{cases}}\)
mà x -y = -6 => 3k - 5k = -6 => -2k = 6 => k = 3
=> x = 3k =>...
...
b) ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2y}{6}\)
ADTCDTSBN
có: \(\frac{x}{2}=\frac{2y}{6}=\frac{z}{5}=\frac{x+2y+z}{2+6+5}=\frac{26}{13}=2\)
=> x/2 = 2 => x = 4
y/3 = 2 => y = 6
z/5 = 2 => z = 10
KL:...
cách 2 bn cx lm như cách kia nha
a,C1: \(\frac{x}{y}=\frac{3}{5}\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{x-y}{3-5}=\frac{-6}{-2}=3\)
=>x=9,y=15
C2: Đặt x/3=y/5=k => x=3k,y=5k
Ta có: x - y = 3k - 5k = -2k = -6 =>k=3
=>x=9,y=15
b, tương tự a
2/
C1: \(\frac{3x-5}{4}=\frac{x-2}{3}\Rightarrow3\left(3x-5\right)=4\left(x-2\right)\Rightarrow9x-15=4x-8\Rightarrow5x=7\Rightarrow x=\frac{7}{5}\)
C2: \(\frac{3x-5}{4}=\frac{x-2}{3}\Rightarrow3x-5=\frac{x-2}{3}\cdot4\Rightarrow3x-5=\frac{4x-8}{3}\Rightarrow9x-15=4x-8\Rightarrow5x=7\Rightarrow x=\frac{7}{5}\)