\(\frac{1}{3.5}+\frac{1}{5.7}+.....+\frac{1}{x.\left(x-3\right)}=\frac{101}{154...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2018

Mk sửa lại đề nha:

                \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{x\left(x-2\right)}=\frac{101}{1540}\)

\(\Leftrightarrow\)\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{x-2}-\frac{1}{x}\right)=\frac{101}{1540}\)

\(\Leftrightarrow\)\(\frac{1}{3}-\frac{1}{x}=\frac{101}{1540}:\frac{1}{2}=\frac{101}{770}\)

\(\Leftrightarrow\)\(\frac{1}{x}=\frac{1}{3}-\frac{101}{770}=\frac{467}{2310}\)

\(\Leftrightarrow\)\(x=\frac{2310}{467}\)

P/S:  Tham khảo nhé!!!

29 tháng 7 2016

\(\frac{1}{5\times8}+\frac{1}{8\times11}+...+\frac{1}{x\times\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}\times\left(\frac{3}{5\times8}+\frac{3}{8\times11}+...+\frac{3}{x\times\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{101}{1540}\div\frac{1}{3}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1504}\times3\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(x+3=308\)

\(x=308-3\)

x = 305

Chúc bạn học tốt ^^

29 tháng 7 2016

\(\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\frac{1}{5}-\frac{1}{3}-\frac{1}{x+3}=\frac{101}{1540}\)

\(\frac{1}{15}-\frac{1}{x+3}=\frac{101}{1540}\)

\(\frac{1}{x+3}=\frac{1}{15}-\frac{101}{1540}\)

\(\frac{1}{x+3}=\frac{1}{924}\)

=> x = 924 -3

=> x = 921

 

16 tháng 6 2016

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\Rightarrow3\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{101}{1540}\)

\(\Rightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

16 tháng 6 2016

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\) (x khác 0; khác -3)

\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

<=>\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

<=>\(\frac{1}{x+3}=\frac{1}{308}\)

=>x+3=308

<=>x=305 (nhận)

Vậy x=305

25 tháng 2 2019

a)Ta có   \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)\(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=)   \(x+3=305\)=) \(x=302\)

3 tháng 8 2018

\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Rightarrow x=305\)

3 tháng 8 2018

a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\)

\(\Leftrightarrow x=308-3\)

\(\Leftrightarrow x=305\)

Vậy \(x=305\)

23 tháng 5 2017

Mình không viết lại đề bài nha

a) \(\Rightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\Rightarrow x=305\)

27 tháng 5 2017

Tìm x,y thuộc Z biết:

a, \(2^{x+y}=2^x+2^y\)

b, \(x+y=x.y=x:y\left(y\ne0\right)\)

Làm nhanh giùm mình nhé!!!!!

28 tháng 9 2016

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{101}{1540}.3\)

\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)

\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)

\(\Rightarrow x+3=308\Rightarrow x=305\)

14 tháng 2 2018

x=305 la giá trị cần tìm

27 tháng 2 2018

\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)

\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{4620}\)

\(\frac{1}{x+3}=\frac{823}{4620}\)

10 tháng 6 2020

\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x\left(x+3\right)}\right)=\frac{101}{1540}\)

\(=\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)

\(=\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)

\(=\frac{1}{x+3}=\frac{1}{308}\)

7 tháng 8 2017

A ) \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+.....+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}.\)

=\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)=101/1540

=\(\frac{101}{1540}:\frac{1}{3}=\frac{1}{5}-\frac{1}{x+3}\)

=tới đó bn tự tính nhé