Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(x^4=16\)
\(\Rightarrow x=2\) hoặc \(x=-2\)
Vậy \(x\in\left\{2;-2\right\}\)
Câu 2:
\(\left(x+5\right)^3=-64\)
\(\Rightarrow\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
Vậy \(x=-9\)
Câu 4:
Giải:
Ta có: \(\frac{x}{2}=\frac{y}{-5}\) và \(x-y=-7\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{7}=-1\)
+) \(\frac{x}{2}=-1\Rightarrow x=-2\)
+) \(\frac{y}{-5}=-1\Rightarrow y=5\)
Vậy cặp số \(\left(x;y\right)\) là \(\left(-2;5\right)\)
Câu 5:
Giải:
Đổi 10km = 10000m
Gọi 10000m dây đồng nặng x ( kg )
Vì số dây đồng tỉ lệ thuận với số cân nặng nên ta có:
\(\frac{5}{43}=\frac{10000}{x}\)
\(\Rightarrow x=\frac{10000.43}{5}=86000\left(kg\right)\)
Vậy 1km dây đồng nặng 86000 kg
Câu 6:
Giải:
Gọi số học sinh giỏi, khá , trung bình của khối 7 là a, b, c \(\left(a;b;c\in N\right)\)
Ta có: \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và \(c+b-a=180\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{c+b-a}{3+5-2}=\frac{180}{6}=30\)
+) \(\frac{a}{2}=30\Rightarrow a=60\)
+) \(\frac{b}{3}=30\Rightarrow b=90\)
+) \(\frac{c}{5}=30\Rightarrow c=150\)
Vậy số học sinh giỏi là 60 học sinh
số học sinh khá là 90 học sinh
số học sinh trung bình là 150 học sinh
Câu 7:
a) Ta có: \(y=f\left(x\right)=x^2-8\)
\(f\left(3\right)=3^2-8=9-8=1\)
\(f\left(-2\right)=\left(-2\right)^2-8=4-8=-4\)
b) Khi y = 17
\(\Rightarrow17=x^2-8\)
\(\Rightarrow x^2=25\)
\(\Rightarrow x=5\) hoặc \(x=-5\)
Vậy \(x\in\left\{5;-5\right\}\)
\(x^2-2x=0\)
\(x.\left(x+2\right)=0\)
\(=>\orbr{\begin{cases}x=0\\x+2=0\end{cases}}\)
\(=>\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
vậy...
\(x^2=2x\)
\(x^2-2x=0\)
\(x\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy,...........
Đặt \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=k\)
=> \(x=3k\) \(y=7k\) \(z=2k\)
Ta có: \(2x^2+y^2+3z^2=316\)
\(\Leftrightarrow\)\(2\left(3k\right)^2+\left(7k\right)^2+3\left(2k\right)^2=316\)
\(\Leftrightarrow\)\(18k^2+49k^2+12k^2=316\)
\(\Leftrightarrow\)\(79k^2=316\)
\(\Leftrightarrow\)\(k^2=4\)
\(\Leftrightarrow\)\(k=\pm2\)
- \(k=2\)thì: \(x=6;\)\(y=14;\)\(z=4\)
- \(k=-2\)thì: \(x=-6;\)\(y=-14;\)\(z=-4\)
Vậy...
Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}->\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
->\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}\) và 2x2+3y2-5x2=-405
Áp dụng tính chất dãy tỉ số bằng nhau, ta được:
\(\frac{2x^2}{8}=\frac{3y^2}{27}=\frac{5z^2}{80}=\frac{2x^2+3y^2-5z^2}{8+27-80}=-\frac{405}{-45}=9\)
Do đó, *)x2/4=9 => x2=9*4=36
=> x=6 hoặc x=-6
*)y2/9=9 => x2=9*9=81
=> y=9 hoặc y=-9
*)z2/16=9 => z2=9*16=144
=> z=12 hoặc z=-12
Vậy x=6; y=9 ; z=12 hoặc x=-6;y=-9;z=-12
chịu thui
chuc bn hoc tốt nha!
nhae$Demngayxaem
nhaE
hihi
____________________________
|x2 - |x - 1|| = x2 + 2
=> \(\orbr{\begin{cases}x^2-\left|x-1\right|=x^2+2\\x^2-\left|x+1\right|=-x^2-2\end{cases}}\)
=> \(\orbr{\begin{cases}\left|x-1\right|=-2\left(loại\right)\\\left|x+1\right|=2x^2+2\end{cases}}\)
=> \(\orbr{\begin{cases}x+1=2x^2+2\\x+1=-2x^2-2\end{cases}}\)
=> \(\orbr{\begin{cases}2x^2-x+1=0\\2x^2+x+3=0\end{cases}}\)
=> \(\orbr{\begin{cases}2\left(x^2-\frac{1}{2}x+\frac{1}{4}\right)+\frac{1}{2}=0\\2\left(x^2+\frac{1}{2}x+\frac{1}{4}\right)+\frac{5}{2}=0\end{cases}}\)(
=> \(\orbr{\begin{cases}2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}=0\\2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}=0\end{cases}}\)(loại)
=> ko có giá trị x thõa mãn
2x - 1 = 16
2x - 1 = 24
=> x - 1 = 4
=> x = 5
2x-1 = 24
=> x-1 = 4
x=4+1
x=5