K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

c)
\(x^3-3.x^2.6+3.x.6^2-6^3=0\)
\(\left(x-6\right)^3=0\)
x-6=0
x=6
d)
\(x^3-3.x^2.1+3.x.1^2-1-x^3-3x-2=0\)
\(x^3-3x^2+3x-1-x^3-3x^2-2=0\)
\(-6x^2-3=0\)
\(-3\left(2x^2+1\right)=0\)
\(2x^2+1=0\)
2x2=-1
x2=1/2
x=\(\dfrac{\sqrt{2}}{2}\)

2 tháng 10 2017

t.i.c.k mik mik t.i.c.k lại

18 tháng 7 2019

c) 5(x^2+8x+16)+4(x^2-10x+25)-9(x^2-16)

=5x^2+40x+80+4x^2-40x+100-9x^2+144

=80+100+144

=324

18 tháng 7 2019

Bài 2 đâu

27 tháng 7 2021

Bài 1 : hđt bạn tự làm nhé

Bài 2 : 

\(\left(x-1\right)\left(x^2+x+1\right)-\left(x-4\right)^2x\)

\(=x^3-1-x\left(x^2-8x+16\right)=x^3-1-x^3+8x^2-16x\)

\(=8x^2-16x-1\)

\(\left(x+7\right)\left(x^2-7x+49\right)-\left(5-x\right)\left(5+x\right)\left(x-1\right)\)

\(=x^3+343-\left(25-x^2\right)\left(x-1\right)=x^3+343-\left(25x-25-x^3+x^2\right)\)

\(=x^3+343+x^3-x^2-25x+25=2x^3-x^2-25x+368\)

27 tháng 7 2021

2 câu cuối bài 1 làm sao 

mk mới học nên ko bt 

14 tháng 7 2018

\(a,\left(x-3\right)^2-4=0\)

\(\Leftrightarrow\left(x-3\right)^2=4\)

\(\Rightarrow x-3=\pm2\)

\(\hept{\begin{cases}x-3=2\Rightarrow x=5\\x-3=-2\Rightarrow x=1\end{cases}}\)

Vậy \(x=5\)hoặc \(x=1\)

\(b,x^2-2x=24\)

\(\Leftrightarrow x^2-2x+1-1=24\)

\(\Leftrightarrow\left(x-1\right)^2=24+1=25\)

\(\Leftrightarrow x-1=\pm5\)

\(\hept{\begin{cases}x-1=5\Rightarrow x=6\\x-1=-5\Rightarrow x=-4\end{cases}}\)

Vậy \(x=6\) hoặc \(x=-4\)

14 tháng 7 2018

\(c,\left(2x+1\right)^2+\left(x+3\right)^2-5\left(x-7\right)\left(x+7\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)

\(\Leftrightarrow4x^2+4x+1+x^2+6x+9-5x^2+245=0\)

\(\Leftrightarrow10x+255=0\)

\(\Leftrightarrow10x=-255\)

\(\Leftrightarrow x=\frac{-51}{2}\)

\(d,\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\right)\left(2-x\right)=1\)

\(\Leftrightarrow x^3-27+x\left(2x-x^2+4-2x\right)=1\)

\(\Leftrightarrow x^3-27-x^3+4x=1\)

\(\Leftrightarrow4x-27=1\)

\(\Leftrightarrow4x=28\)

\(\Leftrightarrow x=7\)

16 tháng 8 2020

a)

pt <=>     \(x^2+4x+4+x^2-6x+9=2x^2+14x\)

<=>     \(2x^2-2x+13=2x^2+14x\)

<=>     \(16x=13\)

<=>     \(x=\frac{13}{16}\)

b)

pt <=>     \(x^3+3x^2+3x+1+x^3-3x^2+3x-1=2x^3\)

<=>   \(2x^3+6x=2x^3\)

<=>   \(6x=0\)

<=>   \(x=0\)

c)

pt <=>    \(\left(x^3-3x^2+3x-1\right)-125=0\)

<=>   \(\left(x-1\right)^3=125\)

<=>   \(x-1=5\)

<=>   \(x=6\)

d)

pt <=>   \(\left(x^2-2x+1\right)+\left(y^2+4y+4\right)=0\)

<=>   \(\left(x-1\right)^2+\left(y+2\right)^2=0\)     (1)

CÓ:   \(\left(x-1\right)^2;\left(y+2\right)^2\ge0\forall x;y\)

=>   \(\left(x-1\right)^2+\left(y+2\right)^2\ge0\)       (2)

TỪ (1) VÀ (2) =>    DÁU "=" XẢY RA <=>   \(\hept{\begin{cases}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{cases}}\)

<=>     \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e)

pt <=>   \(2x^2+8x+8+y^2-2y+1=0\)

<=>   \(2\left(x+2\right)^2+\left(y-1\right)^2=0\)

TA LUÔN CÓ:   \(2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

=> DẤU "=" XẢY RA <=>   \(\hept{\begin{cases}2\left(x+2\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\) 

<=>     \(\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

16 tháng 8 2020

a) ( x + 2 )2 + ( x - 3 )2 = 2x( x + 7 )

<=> x2 + 4x + 4 + x2 - 6x + 9 = 2x2 + 14x

<=> x2 + 4x + x2 - 6x - 2x2 - 14x = -4 - 9

<=> -16x = -13

<=> x = 13/16

b) ( x + 1 )3 + ( x - 1 )3 = 2x3

<=> x3 + 3x2 + 3x + 1 + x3 - 3x2 + 3x - 1 = 2x3

<=> x3 + 3x2 + 3x + x3 - 3x2 + 3x - 2x3 = -1 + 1

<=> 6x = 0

<=> x = 0

c) x3 - 3x2 + 3x - 126 = 0

<=> ( x3 - 3x2 + 3x - 1 ) - 125 = 0

<=> ( x - 1 )3 = 125

<=> ( x - 1 )3 = 53

<=> x - 1 = 5

<=> x = 6

d) x2 + y2 - 2x + 4y + 5 = 0

<=> ( x2 - 2x + 1 ) + ( y2 + 4y + 4 ) = 0

<=> ( x - 1 )2 + ( y + 2 )2 = 0 (*)

\(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-1\right)^2+\left(y+2\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức (*) ) <=> \(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

e) 2x2 + 8x + y2 - 2y + 9 = 0

<=> 2( x2 + 4x + 4 ) + ( y2 - 2y + 1 ) = 0

<=> 2( x + 2 )2 + ( y - 1 )2 = 0 (*)

\(\hept{\begin{cases}2\left(x+2\right)^2\ge0\forall x\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow2\left(x+2\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

Đẳng thức xảy ra ( tức xảy ra (*) ) <=> \(\hept{\begin{cases}x+2=0\\y-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=-2\\y=1\end{cases}}\)

a) \(\left(x+2\right)^2-9=0\)

\(=>\left(x+2\right)^2-3^2=0\\ =>\left(x+2-3\right).\left(x+2+3\right)=0\)

\(=>\left(x-1\right).\left(x+5\right)=0\)

\(=>\orbr{\begin{cases}x-1=0\\x+5=0\end{cases}}=>\orbr{\begin{cases}x=1\\x=-5\end{cases}}\)

Vậy x= 1 hoặc x= -5

b) \(x^2-2x+1=25\)

\(=>x^2-2.x.x+1^2=25\)

\(=>\left(x-1\right)^2-25=0\\ =>\left(x-1\right)^2-5^2=0\)

\(=>\left(x-1-5\right).\left(x-1+5\right)=0\)

\(=>\left(x-6\right).\left(x+4\right)=0=>\orbr{\begin{cases}x-6=0\\x+4=0\end{cases}}\)

\(=>\orbr{\begin{cases}x=6\\x=-4\end{cases}}\)

Vậy x= 6 hoặc x= -4

c) \(4x\left(x-1\right)-\left(2x+5\right)\left(2x-5\right)=1\)

\(=>4x\left(x-1\right)-\left[\left(2x\right)^2-5^2\right]=1\)

\(=>4x\left(x-1\right)-4x^2+25-1=0\)

\(=>4x\left(x-1\right)-4x^2+24=0\)

\(=>4x\left(x-1\right)-\left(4x^2-24\right)=0\\ =>4x\left(x-1\right)-4\left(x^2-6\right)=0\)

..................... tắc ròi -.-"

d) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+3\right)=15\)

\(=>x^3+27-x^3-3x=15\)

\(=>27-3x-15=0=>12-3x=0=>3\left(4-x\right)=0\)

Vì \(3>0=>4-x=0=>x=4\)

Vậy x= 4

e) \(3\left(x+2\right)^2+\left(2x+1\right)^2-7\left(x+3\right)\left(x-3\right)=28\)

\(=>3\left(x^2+2.x.2+2^2\right)+4x^2+4x+1-7\left(x^2-9\right)=28\)

\(=>3\left(x^2+4x+4\right)+4x^2+4x+1-7x^2+63=28\)

\(=>3x^2+12x+12+4x^2+4x+1-7x^2+63=28\)

\(=>16x+75=28=>16x=-47=>x=\frac{-47}{16}\)

Cậu có thể tham khảo bài làm trên đây ạ, chúc cậu học tốt :>'-'

10 tháng 10 2020

Cảm ơn cậu nhiều nhé!

13 tháng 1 2017

1. Ta có \(x^3+3x^2+x+3=0\)

\(\Leftrightarrow\left(x^3+3x^2\right)+\left(x+3\right)=0\)

\(\Leftrightarrow x^2\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^2+1\right)=0\)

Nếu x+3=0 =>x=-3

Nếu \(x^2+1=0\) =>x\(=\varnothing\) (vì \(x^2+1>0\))

Vậy x=-3

13 tháng 1 2017

2) đặt x^2+x+1 = t

=> x^2 +x +2 =t+1

pt => t(t+1)=2

t^2 + t -2 =0

\(\Rightarrow\left[\begin{matrix}t=1\\t=-2\end{matrix}\right.\)

voi t=1 => x^2 +x+1=1

=> \(\Rightarrow\left[\begin{matrix}x=-1\\x=0\end{matrix}\right.\)

voi t=-2 => x^2+x+1=-2

=> x^2+x+3=0(vo nghiem)

cau 3 lam nhu cau 2

4) pt <=> (x^2-4)(x+3-x+1)=0

ban tu giai not nha