Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\)=52\(\Leftrightarrow12\left(x^2-2^2\right)-3\left(4x^2+12x+9\right)=52\)
\(\Leftrightarrow12x^2-48-12x^2-36x-27-52=0\)
\(\Leftrightarrow-36x-127=0\)
\(\Leftrightarrow x=-3.52\)
Bạn học hằng đẳng thức chưa bạn , bạn chỉ cần nắp chúng vào là làm đc thôi
a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)
\(\Leftrightarrow4x^2+20x+25=x^2+4x+4\)
\(\Leftrightarrow4x^2-x^2+20x-4x=4-25\)
\(\Leftrightarrow3x^2+16x=-21\)
\(\Leftrightarrow3x^2+16x+21=0\)
\(\Leftrightarrow3x^2+9x+7x+21=0\)
\(\Leftrightarrow3x\left(x+3\right)+7\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{-3;\dfrac{-7}{3}\right\}\)
e)\(\left(x-2\right)\left(2x-3\right)=\left(4-2x\right)\left(x-2\right)\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)-\left(4-2x\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x-3-4+2x\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{4}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S=\(\left\{2;\dfrac{7}{4}\right\}\)
g)\(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-\left(2x+1\right)\left(3x-5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)
\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\4\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{4;\dfrac{-1}{2}\right\}\)
Copy có khác, ko đọc đc j!!! ʌl
Câu 3:
1)
a) Ta có: 3x−2=2x−33x−2=2x−3
⇔3x−2−2x+3=0⇔3x−2−2x+3=0
⇔x+1=0⇔x+1=0
hay x=-1
Vậy: x=-1
b) Ta có: 3−4y+24+6y=y+27+3y3−4y+24+6y=y+27+3y
⇔27+2y=27+4y⇔27+2y=27+4y
⇔27+2y−27−4y=0⇔27+2y−27−4y=0
⇔−2y=0⇔−2y=0
hay y=0
Vậy: y=0
c) Ta có: 7−2x=22−3x7−2x=22−3x
⇔7−2x−22+3x=0⇔7−2x−22+3x=0
⇔−15+x=0⇔−15+x=0
hay x=15
Vậy: x=15
d) Ta có: 8x−3=5x+128x−3=5x+12
⇔8x−3−5x−12=0⇔8x−3−5x−12=0
⇔3x−15=0⇔3x−15=0
⇔3(x−5)=0⇔3(x−5)=0
Vì 3≠0
nên x-5=0
hay x=5
Vậy: x=5
a) 3x - 2 = 2x - 3
\(\Leftrightarrow\) 3x - 2 - 2x + 3 = 0
\(\Leftrightarrow\) x + 1 = 0
\(\Rightarrow\) x = -1
b) 3 - 4y + 24 + 6y = y + 27 + 3y
\(\Leftrightarrow\) 3 - 4y + 24 + 6y - y - 27 - 3y = 0
\(\Leftrightarrow\) -2y = 0
\(\Rightarrow\) y = 0
c)7 - 2x = 22 - 3x
\(\Leftrightarrow\) 7 - 2x - 22 + 3x = 0
\(\Leftrightarrow\) -15 + x = 0
\(\Rightarrow\) x = 15
d) 8x - 3 = 5x + 12
\(\Leftrightarrow\) 8x - 3 - 5x - 12 = 0
\(\Leftrightarrow\)3x -15 = 0
\(\Leftrightarrow\) 3x = 15
\(\Rightarrow\) x = 5
e) x - 12 + 4x = 25 + 2x - 1
\(\Leftrightarrow\) x - 12 + 4x - 25 - 2x + 1 = 0
\(\Leftrightarrow\) 3x - 36 = 0
\(\Leftrightarrow\) 3x = 36
\(\Rightarrow\) x = 12
f ) x + 2x + 3x - 19 = 3x + 5
\(\Leftrightarrow\) x + 2x + 3x - 19 - 3x - 5 = 0
\(\Leftrightarrow\)3x - 24 = 0
\(\Leftrightarrow\) 3x = 24
\(\Rightarrow\) x = 8
g) 11+ 8x - 3 = 5x - 3 +x
\(\Leftrightarrow\)8x + 8 = 6x - 3
\(\Leftrightarrow\)8x - 6x = -3 - 8
\(\Leftrightarrow\)2x = -11
\(\Rightarrow\)x = \(-\frac{11}{2}\)
h) 4 - 2x +15 = 9x + 4 -2
\(\Leftrightarrow\)19 - 2x = 7x + 4
\(\Leftrightarrow\)-2x - 7x = 4 - 19
\(\Leftrightarrow\)-9x = -15
\(\Rightarrow\)x = \(\frac{15}{9}\) = \(\frac{5}{3}\)
\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)
\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)
\(\Leftrightarrow3x+6+2x+2=5x+4\)
\(\Leftrightarrow3x+2x-5x=-6-2+4\)
\(\Leftrightarrow0x=-4\)
=> PT vô nghiệm
\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)
\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)
\(\Leftrightarrow4x-2-15=9x-3\)
\(\Leftrightarrow4x-9x=2+15-3\)
\(\Leftrightarrow-5x=14\)
.....
a)(3x-1)2+2(3x-1)(2x+1)2(2x+1)=48x^4+56x^3+21x^2-12x-1 cái này tra google
b)(x2+1)(x-3)-(x-3)(x2+3x+9)=(x2+1)(x-3)-(x-3)(x+3)2=(x-3)[(x2+1)-(x+3)2 ]
c)(2x+3)2+(2x+5)2-2(2x+3)(2x+5)=(2x+3)2+(2x+5)2-(2x+3)(2x+5)-(2x+3)(2x+5)=(2x+3)(2x+3-2x+5)+(2x+5)(2x+5-2x+3)
=8(2x+3)+8(2x+5)=8(2x+3+2x+5)
=8(4x+8)
d)(x-3)(x+3)-(x-3)2 =(x-3)(x+3)-(x-3)(x-3)=(x-3)(x+3-x-3)=0
e)(2x+1)2+2(4x2-1)+(2x-1)2 =(2x+1)2+2[(2x)2 -1]+(2x-1)2 =(2x+1)(2x+1+2x-1)+(2x-1)(2x+1+2x-1)=4x(2x+1)+4x(2x-1)
=4x(2x+1+2x-1)=16x2
f)(x2-1)(x+2)-(x-2)(x2+2x+4)= (x2-1)(x+2)-(x-2)(x+2)2 =(x2-1)(x+2)-(x2-22)(x+2)=(x+2)(x2-1-x2-22) mình đoán câu f khai triển ra thế này nhưng kq không giống nhau nên chắc bạn phải tự làm rồi
\(12\left(x-2\right)\left(x+2\right)-3\left(2x+3\right)^2\) \(=52\)
\(12\left(x^2-4\right)-3\left(4x^2+12x+9\right)\) \(=52\)
\(12x^2-48-12x^2-36x-27\) \(=52\)
\(-36x-75=52\)
\(-36x=127\)
\(x=\frac{-127}{36}\)
\(\left(2x+1\right)^2-4\left(x-1\right)\left(x+1\right)\) \(+2x=5\)
\(4x^2+4x+1-4\left(x^2-1\right)\) \(+2x=5\)
\(4x^2+4x-1-4x^2+4+2x=5\)
\(6x+3=5\)
\(6x=2\)
\(x=3\)
\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)\) \(+6\left(x-1\right)^2=15\)
\(x^3-6x^2+12x-8-\left(x-3\right)\left(x+3\right)^2\) \(+6\left(x^2-2x+1\right)=15\)
\(x^3-6x^2+12x-8-\left(x^2-9\right)\left(x+3\right)\) \(+6x^2-12x+6=15\)
\(x^3-2\) \(-\left(x^3+3x^2-9x-27\right)\)\(=15\)
\(x^3-2-x^3-3x^2+9x+27=15\)
\(-3x^2+9x+25=15\)
\(-3x^2+9x+10=0\)
\(-3\left(x^2-3x-\frac{10}{3}\right)\) \(=0\)
\(x=\frac{9+\sqrt{201}}{6}\)
các câu còn lại tương tự