K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

a) x^2 + 14x + 49 - x^2 + 3x = 12
<=> 17x = -37
<=> x = -37/17
b) x^2 + 2x +1 - x^2 + 4 = 0
<=> 2x = -5
<=> x = -5/2  

8 tháng 8 2018

a) \(\left(x+7\right)^2-x\left(x-3\right)=12\)

\(\Leftrightarrow x^2+14x+49-x^2+3x=12\)

\(\Leftrightarrow17x=-37\)

\(\Leftrightarrow x=\frac{-37}{17}\)

Vậy x = -37/17

b) \(\left(x+1\right)^2-\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow x^2+2x+1-\left(x^2-4\right)=0\)

\(\Leftrightarrow x^2+2x+1-x^2+4=0\)

\(\Leftrightarrow2x=-5\)

\(\Leftrightarrow x=\frac{-5}{2}\)

Vậy x = -5/2

14 tháng 10 2016

a) x2(x-3)-12+4x=0

=>x2(x-3)+4x-12=0

=>x2(x-3)+4(x-3)=0

=>(x2+4)(x-3)=0

=>x-3=0 (loại x2+4=0 do x2+4 >= 4 > 0 với mọi x)

=>x=3

b)(2x-1)2-(x+3)2=0

=>(2x-1-x-3)(2x-1+x+3)=0

=>(x-4)(3x+2)=0

=>x=4 hoặc x=-2/3

c)2x2-5=0

=>2x2=5=>x2=\(\frac{5}{2}=>\hept{\begin{cases}x=\sqrt{\frac{5}{2}}\\x=-\sqrt{\frac{5}{2}}\end{cases}}\)

14 tháng 8 2016

a) (x-2)- 6(x+1)2 - x3 + 12 = 0 

<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0

<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0

<=> -12x2+4=0

<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)

vậy pt có 2 nghiệm....

b) x3 - 6x2 + 12x - 8 = 0 

<=> (x3-2x2)-(4x2-8x)+(4x+8)=0

<=> (x-2)(x2-4x+4)=(x-2)3=0

=> x=2 là nghiệm

c) 8x3 - 12x2 + 6x - 1 = 0

<=> (2x-1)3=0

<=> x=1/2

14 tháng 8 2016

a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)

\(\Leftrightarrow-12x^2-2=0\)

\(\Leftrightarrow-2\left(6x^2+1\right)=0\)

\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)

Vậy không có giá trị nào của x thỏa mãn pt

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy x=2

c) \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(=\frac{1}{2}\)

11 tháng 10 2020

a) \(x\left(x-2\right)-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(x^2+12x-13=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)

d) \(4x^2-4x=8\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

e) \(x^2-6x=1\)

\(\Leftrightarrow\left(x-3\right)^2=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)

11 tháng 10 2020

a) x( x - 2 ) - 7x + 14 = 0

<=> x( x - 2 ) - 7( x - 2 ) = 0

<=> ( x - 2 )( x - 7 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)

b) x2( x - 3 ) + 12 - 4x = 0

<=> x2( x - 3 ) - 4( x - 3 ) = 0

<=> ( x - 3 )( x2 - 4 ) = 0

<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) x2 + 12x - 13 = 0

<=> x2 - x + 13x - 13 = 0

<=> x( x - 1 ) + 13( x - 1 ) = 0

<=> ( x - 1 )( x + 13 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)

d) 4x2 - 4x = 8

<=> 4( x2 - x ) = 8

<=> x2 - x = 2

<=> x2 - x - 2 = 0

<=> x2 + x - 2x - 2 = 0

<=> x( x + 1 ) - 2( x + 1 ) = 0

<=> ( x + 1 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

e) x2 - 6x = 1

<=> x2 - 6x + 9 = 1 + 9

<=> ( x - 3 )2 = 10

<=> ( x - 3 )2 = ( ±√10 )2

<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)