Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x^4+3x^3-16x-24=0\)
\(\left(2x^4+3x^3\right)-\left(16x+24\right)=0\)
\(x^3.\left(2x+3\right)-8\left(2x+3\right)=0\)
\(\left(x^3-8\right)\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3-8=0\\2x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^3=8\\2x=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{-3}{2}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=2\\x=-\frac{3}{2}\end{cases}}\)
a/ (x-3)2 - 4 = 0
=> (x-3-2)(x-3+2)=0
=> (x-5)(x-1)=0
=> x = 5 hoặc x=1
a) \(5x\left(x+4\right)-x\left(5x+1\right)=0\)
\(\Leftrightarrow x\left[5\left(x+4\right)-5x-1\right]=0\)
\(\Leftrightarrow x\left(5x+20-5x-1\right)=0\Leftrightarrow x=0\)
b) \(3x\left(5-x\right)+4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(4-3x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{4}{3}\end{cases}}\)
c) \(x\left(x-3\right)+4x-12=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}\)
d) \(x^2-36=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=-6\end{cases}}\)
e) \(x^2+3x+1=2\)
\(\Leftrightarrow x^2+3x+1-2=0\)
\(\Leftrightarrow x^2+3x-1=0\)
\(\Leftrightarrow x^2+3x+\frac{3}{2}-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{5}{2}=0\)
\(\Leftrightarrow\left(x+\frac{3}{2}+\frac{\sqrt{5}}{\sqrt{2}}\right)\left(x+\frac{3}{2}-\frac{\sqrt{5}}{\sqrt{2}}\right)=0\)
Còn lại ........... Tự lm nất nha
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)
Ta có:\(\left(x+3\right)^2=\left(x+3\right)\left(x-3\right)\)
Xét \(x+3=0\Rightarrow x=-3\)
Xét \(x+3\ne0\) ta có:
\(x+3=x-3\)
\(\Rightarrow0=6\left(VL\right)\)
Vậy \(x=-3\)
a)
(x + 3)2 = (x + 3)(x – 3)
⇔ (x + 3)2 - (x + 3)(x - 3) = 0
⇔ (x + 3)(x + 3 - x + 3) = 0
⇔ 6(x + 3) = 0
⇔ x = -3
Vậy: x = -3
b) Ta có A = (x + 1)(x + 2)(x + 3)(x + 4) – 24
= (x + 1)(x + 4)(x + 2)(x + 3) - 24
= (x2 + 5x + 4)(x2 + 5x + 6) - 24(*)
Đặt x2 + 5x + 5 = t
Thay x2 + 5x + 5 = t vào (*) ta được:
A = (t - 1)(t + 1) - 24
= t2 - 25
= (t - 25)(t + 25)
= (x2 + 5x + 5 + 5)(x2 + 5x + 5 - 5)
= (x2 + 5x + 10)(x2 + 5x)
(x2 + 5x + 10).x(x + 5) chia hết cho x (Với x ≠ 0)
Vậy: A chia hết cho x (Với x ≠ 0)
A x=12
B x=2