K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

a)\(8\sqrt{x}-3\sqrt{\frac{4}{81}}=5,2\)

\(\Rightarrow8\sqrt{x}-3.\frac{2}{9}=5,2\)

\(\Rightarrow8\sqrt{x}-\frac{2}{3}=5,2\)

\(\Rightarrow8\sqrt{x}=5,2+\frac{2}{3}\)

\(\Rightarrow8\sqrt{x}=\frac{40}{3}\)

\(\Rightarrow\sqrt{x}=\frac{40}{3}:8\)

\(\Rightarrow\sqrt{x}=\frac{5}{3}\)

\(\Rightarrow x=\frac{25}{9}\)

b)\(12-3x^2=10+\sqrt{\frac{25}{16}}\)

\(\Rightarrow12-3x^2=10+\frac{5}{4}\)

\(\Rightarrow12-3x^2=11,25\)

\(\Rightarrow3x^2=12-11,25\)

\(\Rightarrow3x^2=0,75\)

\(\Rightarrow x^2=0,25\)

\(\Rightarrow x=\sqrt{0,25}\)

\(\Rightarrow x=0,5\)

11 tháng 2 2018

b,\(12-3x^2=10+\sqrt{\dfrac{25}{16}}\)

\(\Leftrightarrow12-3x^2=\dfrac{45}{4}\)

\(\Leftrightarrow3x^2=\dfrac{3}{4}\)

\(\Leftrightarrow x^2=\dfrac{1}{4}\)

\(\Leftrightarrow x=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

Vậy...

\(a,\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)

\(=\frac{-5}{9}.\frac{-1}{10}\)

\(=\frac{1}{18}\)

\(b,2^8:2^5+3^3.2-12\)

\(=2^3+9.2-12\)

\(=8+18-12\)

\(=26-12\)

\(=14\)

Câu c,d em chưa học nên không biết làm ạ, mong mọi người thông cảm!!!

Sửa lại câu b

\(=2^3+27.2-12\)

\(=8+54-12\)

\(=62-12\)

\(=50\)

23 tháng 12 2016

a là âm 2.671428571

5 tháng 4 2017

a, \(-\frac{187}{70}\)

b,\(\frac{27}{70}\)

c,\(\frac{53}{14}\)

d,\(\frac{27}{4}\)

e,1

f,\(\frac{23}{4}\)

g,-1

i,6

k,315

l,\(\frac{9}{2}\)
 

21 tháng 10 2018

a) = \(\frac{7}{2}\)

b) = \(\frac{643}{64}\)

c) = 0

Bài 1:

a) Ta có: \(\left(0.125\right)\cdot\left(-3\cdot7\right)\cdot\left(-2\right)^3\)

\(=\frac{1}{8}\cdot\left(-21\right)\cdot\left(-8\right)\)

\(=\frac{1}{8}\cdot168\)

\(=21\)

b) Ta có: \(\sqrt{36}\cdot\sqrt{\frac{25}{16}}+\frac{1}{4}\)

\(=\sqrt{36\cdot\frac{25}{16}}+\frac{1}{4}\)

\(=\sqrt{\frac{225}{4}}+\frac{1}{4}\)

\(=\frac{15}{2}+\frac{1}{4}\)

\(=\frac{31}{4}\)

c) Ta có: \(\sqrt{\frac{4}{81}}:\sqrt{\frac{25}{81}}-1\frac{2}{5}\)

\(=\frac{2}{9}:\frac{5}{9}-\frac{7}{5}\)

\(=\frac{2}{5}-\frac{7}{5}=-1\)

d) Ta có: \(0,1\cdot\sqrt{225}\cdot\sqrt{\frac{1}{4}}\)

\(=0,1\cdot15\cdot\frac{1}{2}=\frac{3}{4}\)

6 tháng 7 2022

hay quá eoeo cảm ơn bạn nhé yeu

25 tháng 12 2018

\(-\frac{5}{9}\left(\frac{3}{10}-\frac{2}{5}\right)=-\frac{5}{9}\left(\frac{3}{10}-\frac{4}{10}\right)=-\frac{5}{9}.\frac{-1}{10}=\frac{1}{18}\)

\(\frac{1}{2}\sqrt{64}-\sqrt{\frac{9}{25}}+1^{2016}=\frac{1}{2}.8-\frac{3}{5}+1=4+\frac{2}{5}=\frac{22}{5}\)

\(2^8:2^5+3^2.2-12=2^3+9.2-12=8+18-12=8+6=14\)

25 tháng 12 2018

\(3^x+\sqrt{\frac{16}{81}}-\sqrt{9}+\frac{\sqrt{81}}{3}=9\frac{4}{9}\)

\(3^x+\frac{4}{9}-3+\frac{9}{3}=9\frac{4}{9}\)

\(3^x+\frac{4}{9}-3+3=9\frac{4}{9}\)

\(3^x+\frac{4}{9}=9+\frac{4}{9}\)

\(\Rightarrow3^x=9+\frac{4}{9}-\frac{4}{9}\)

\(3^x=9\)

\(3^x=3^2\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

25 tháng 11 2019

Bai 1

a) \(\sqrt{0,36}+\sqrt{0,49}=0,6+0,7=1,3\)

b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}=\frac{2}{3}-\frac{5}{6}\)

=\(-\frac{1}{6}\)

Bài 2

a)\(x^2=81\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

b) \(\left(x-1\right)^2=\frac{9}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{3}{4}\\x-1=\frac{-3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)

c) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

d) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

20 tháng 12 2018

a) \(\frac{1}{4}+\frac{1}{3}:2x=-5\)

\(\frac{1}{3}:2x=\frac{-21}{4}\)

\(2x=\frac{-4}{63}\)

\(x=\frac{2}{63}\)

20 tháng 12 2018

b) \(\left(3x-\frac{1}{4}\right)\left(x+\frac{1}{2}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-\frac{1}{4}=0\\x+\frac{1}{2}=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{12}\\x=\frac{-1}{2}\end{cases}}\)

Vậy.........