Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, x = -5/3 hoặc x = 4/3.
c, x = 0 hoặc x = 3, -3.
d, x = 0 hoặc x = 2, -2.
e, x = 1 hoặc x = \(\dfrac{-1}{2}\).
a: \(\Leftrightarrow x^2-40x+400-x^2-4x-3=-7\)
=>-44x+397=-7
=>-44x=-404
hay x=101
b: \(\Leftrightarrow\left[{}\begin{matrix}3x+5=0\\4-3x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{5}{3};\dfrac{4}{3}\right\}\)
c: \(\Leftrightarrow x\left(x^2-9\right)=0\)
=>x(x-3)(x+3)=0
hay \(x\in\left\{0;3;-3\right\}\)
d: \(\Leftrightarrow x\left(x-2\right)\left(x+2\right)=0\)
hay \(x\in\left\{0;2;-2\right\}\)
e: =>(2x+1)(1-x)=0
=>x=-1/2 hoặc x=1
Bài 2:
a: \(\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
=>(x+5)(x-6)=0
=>x=-5 hoặc x=6
b: \(\Leftrightarrow4x^2-4x+1-4x^2+1=0\)
=>-4x+2=0
hay x=1/2
c: \(\Leftrightarrow\left(x^2+4\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1
a, \(x^2-12x-2x+24=0\Leftrightarrow x^2-14x+24=0\Leftrightarrow\left(x-12\right)\left(x-2\right)=0\)
TH1 : x = 12 ; TH2 : x = 2
b, \(x^2-5x-24=0\Leftrightarrow\left(x-8\right)\left(x+3\right)=0\)
TH1 : x = 8 ; TH2 : x = -3
c, \(4x^2-12x-7=0\Leftrightarrow\left(2x+1\right)\left(2x-7\right)=0\)
TH1 : x = -1/2 ; TH2 : x = 7/2
d, \(x^3+6x^2+12x+8=0\Leftrightarrow\left(x+2\right)^3=0\Leftrightarrow x=-2\)
Tương tự HĐT thôi :)
a) x2 - 12x - 2x + 24 = 0
<=> x( x - 12 ) - 2( x - 12 ) = 0
<=> ( x - 12 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x-12=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) x2 - 5x - 24 = 0
<=> x2 + 3x - 8x - 24 = 0
<=> x( x + 3 ) - 8( x + 3 ) = 0
<=> ( x + 3 )( x - 8 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) 4x2 - 12x - 7 = 0
<=> 4x2 + 2x - 14x - 7 = 0
<=> 2x( 2x + 1 ) - 7( 2x + 1 ) = 0
<=> ( 2x + 1 )( 2x - 7 ) = 0
<=> \(\orbr{\begin{cases}2x+1=0\\2x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{7}{2}\end{cases}}\)
d) x3 + 6x2 + 12x + 8 = 0
<=> ( x + 2 )3 = 0
<=> x + 2 = 0
<=> x = -2
e) ( x + 2 )2 - x2 + 4 = 0
<=> x2 + 4x + 4 - x2 + 4 = 0
<=> 4x + 8 = 0
<=> 4x = -8
<=> x = -2
f) 2( x + 5 ) = x2 + 5x
<=> x2 + 5x - 2x - 10 = 0
<=> x( x + 5 ) - 2( x + 5 ) = 0
<=> ( x + 5 )( x - 2 ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) 16( 2x - 3 )2 - 25( x - 5 )2 = 0
<=> 42( 2x - 3 )2 - 52( x - 5 )2 = 0
<=> [ 4( 2x - 3 ) ]2 - [ 5( x - 5 ) ]2 = 0
<=> ( 8x - 12 )2 - ( 5x - 25 )2 = 0
<=> [ 8x - 12 - ( 5x - 25 ) ][ 8x - 12 + ( 5x - 25 ) ] = 0
<=> ( 8x - 12 - 5x + 25 )( 8x - 12 + 5x - 25 ) = 0
<=> ( 3x + 13 )( 13x - 37 ) = 0
<=> \(\orbr{\begin{cases}3x+13=0\\13x-37=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) x2 - 6x + 4 = 0
<=> ( x2 - 6x + 9 ) - 5 = 0
<=> ( x - 3 )2 - ( √5 )2 = 0
<=> ( x - 3 - √5 )( x - 3 + √5 ) = 0
<=> \(\orbr{\begin{cases}x-3-\sqrt{5}=0\\x-3+\sqrt{5}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
a) \(x^2-12x-2x+24=0\)
\(\Leftrightarrow x\left(x-12\right)-2\left(x-12\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=12\\x=2\end{cases}}\)
b) \(x^2-5x-24=0\)
\(\Leftrightarrow\left(x^2+3x\right)-\left(8x+24\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x-8\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-3\\x=8\end{cases}}\)
c) \(4x^2-12x-7=0\)
\(\Leftrightarrow\left(4x^2-14x\right)+\left(2x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}\)
d) \(x^3+6x^2+12x+8=0\)
\(\Leftrightarrow\left(x+2\right)^3=0\)
\(\Rightarrow x=-2\)
e) \(\left(x+2\right)^2-x^2+4=0\)
\(\Leftrightarrow4x+8=0\)
\(\Rightarrow x=-2\)
f) \(2\left(x+5\right)=x^2+5x\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
m) \(16\left(2x-3\right)^2-25\left(x-5\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}8x-12=5x-25\\8x-12=25-5x\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}3x=-13\\13x=37\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{13}{3}\\x=\frac{37}{13}\end{cases}}\)
n) \(x^2-6x+4=0\)
\(\Leftrightarrow\left(x-3\right)^2-5=0\)
\(\Leftrightarrow\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{5}\\x=3-\sqrt{5}\end{cases}}\)
1. 4x2 + 4x + 2 = (4x2 + 4x + 1) + 1 = (2x + 1)2 + 1
Có: (2x+1)2 ≥ 0 ∀x => (2x+1)2 + 1 ≥ 1 > 0 (đpcm)
3. -x2 + 4x - 5 = -(x2 - 4x + 4) - 1 = -(x - 2)^2 - 1
Có: -(x-2)^2 ≤ 0 => -(x-2)^2 -1 ≤ - 1 < 0 (đpcm)
7. (x+2)(x-5) + 15 = x2 - 3x + 5 = (x2 - 2.x.\(\dfrac{3}{2}\)+ \(\dfrac{9}{4}\)) + \(\dfrac{11}{4}\)
= ( x - \(\dfrac{3}{2}\))^2 + \(\dfrac{11}{4}\) \(\ge\dfrac{11}{4}>0\left(đpcm\right)\)
a) \(5\left(x+7\right)-12x=15\)
\(5x+35-12x=15\)
\(-7x=15-35\)
\(-7x=-20\)
\(x=\frac{20}{7}\)
vay \(x=\frac{20}{7}\)
b) \(x^2-25-\left(x+5\right)=0\)
\(x^2-5^2-\left(x+5\right)=0\)
\(\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\)
\(\left(x+5\right)\left(x-5-1\right)=0\)
\(\left(x+5\right)\left(x-6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\x-6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
vay \(\orbr{\begin{cases}x=-5\\x=6\end{cases}}\)
c) \(\left(2x-1\right)^2-\left(4x^2-1\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(\left(2x\right)^2-1^2\right)=0\)
\(\left(2x-1\right)\left(2x-1\right)-\left(2x-1\right)\left(2x+1\right)=0\)
\(\left(2x-1\right)\left(2x-1-2x-1\right)=0\)
\(-2.\left(2x-1\right)=0\)
\(\Rightarrow2x-1=0\)
\(\Rightarrow x=\frac{1}{2}\)
vay \(x=\frac{1}{2}\)
d) \(x^2.\left(x^2+4\right)-x^2-4=0\)
\(x^2\left(x^2+4\right)-\left(x^2+4\right)=0\)
\(\left(x^2-1\right)\left(x^2+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-1=0\\x^2+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x^2=1\\x^2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=1hoacx=-1\\kotontai\end{cases}}\)
vay \(x=1\)hoac \(x=-1\)