Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
a) (3x-5)2 - (x+1)2 =0
\(\Leftrightarrow\left(3x-5+x+1\right)\left[\left(3x-5\right)-\left(x-1\right)\right]=0\)
\(\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\)
\(\Leftrightarrow8\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
b) 4x3 - 36x =0
\(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}4x=0\\x-3=0\\x+3=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=3\\x=-3\end{array}\right.\)
a) = x3 + 9x2 + 27x + 27 - 9x3 -6x2 - x + 8x3 +1 -3x2 =54
26x +28 = 54
26x = 54-28 = 26
x = 1
b) = x3 - 9x2 + 27x -27 - x3 +27 +6x2 + 12x + 6 +3x2 = -33
39x +6 = -33
39x = -33-6 = -39
x = -1
x3 - 2x2 - 8x = 0
⇔ x( x2 - 2x - 8 ) = 0
⇔ x( x2 - 4x + 2x - 8 ) = 0
⇔ x[ x( x - 4 ) + 2( x - 4 ) ] = 0
⇔ x( x - 4 )( x + 2 ) = 0
⇔ x = 0 hoặc x - 4 = 0 hoặc x + 2 = 0
⇔ x = 0 hoặc x = 4 hoặc x = -2
x( x - 1 ) - x2 + 2x = 5
⇔ x2 - x - x2 + 2x = 5
⇔ x = 5
4x3 - 36x = 0
⇔ 4x( x2 - 9 ) = 0
⇔ 4x( x - 3 )( x + 3 ) = 0
⇔ 4x = 0 hoặc x - 3 = 0 hoặc x + 3 = 0
⇔ x = 0 hoặc x = 3 hoặc x = -3
2x2 - 2x = ( x - 1 )2
⇔ 2x( x - 1 ) - ( x - 1 )2 = 0
⇔ ( x - 1 )( 2x - x + 1 ) = 0
⇔ ( x - 1 )( x + 1 ) = 0
⇔ x - 1 = 0 hoặc x + 1 = 0
⇔ x = 1 hoặc x = -1
( x - 7 )( x2 - 9x + 20 )( x - 2 ) = 72
⇔ [ ( x - 7 )( x - 2 ) ]( x2 - 9x + 20 ) - 72 = 0
⇔ ( x2 - 9x + 14 )( x2 - 9x + 20 ) - 72 = 0
Đặt t = x2 - 9x + 17
⇔ ( t - 3 )( t + 3 ) - 72 = 0
⇔ t2 - 9 - 72 = 0
⇔ t2 - 81 = 0
⇔ ( t - 9 )( t + 9 ) = 0
⇔ ( x2 - 9x + 17 - 9 )( x2 - 9x + 17 + 9 ) = 0
⇔ ( x2 - 9x + 8 )( x2 - 9x + 26 ) = 0
⇔ ( x2 - 8x - x + 8 )( x2 - 9x + 26 ) = 0
⇔ [ x( x - 8 ) - ( x - 8 ) ]( x2 - 9x + 26 ) = 0
⇔ ( x - 8 )( x - 1 )( x2 - 9x + 26 ) = 0
⇔ x - 8 = 0 hoặc x - 1 = 0 hoặc x2 - 9x + 26 = 0
⇔ x = 8 hoặc x = 1 [ x2 - 9x + 26 = ( x2 - 9x + 81/4 ) + 23/4 = ( x - 9/2 )2 + 23/4 ≥ 23/4 > 0 ∀ x ]
\(x^3-2x^2-8x=x\left(x^2-2x-8\right)=x\left(x^2-4x+2x-8\right)=x\left[x\left(x-4\right)+2\left(x-4\right)\right]\)
\(=x\left(x+2\right)\left(x-4\right)\)
\(x\left(x-1\right)-x^2+2x=x^2-x-x^2+2x=x=5\)
\(4x^3-36x=4x\left(x^2-9\right)=4x\left(x-3\right)\left(x+3\right)\Leftrightarrow x=0\text{ hoặc }x=3\text{ hoặc }x=-3\)
\(2x^2-2x=x^2-2x+1\Leftrightarrow x^2=1\Leftrightarrow x=-1\text{ hoặc }1\)
\(\left(x-7\right)\left(x-4\right)\left(x-5\right)\left(x-2\right)=72\Leftrightarrow\left(x^2-9x+14\right)\left(x^2-9x+20\right)=72\)
đến đây đặt x^2-9x+14=a r giải như thường
\(x^2-3x=0\)
\(\Leftrightarrow x\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
\(x^5-9x=0\)
\(\Leftrightarrow x\left(x^4-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^4-9=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm\sqrt[4]{9}\end{cases}}\)
a ) \(\left(x+2\right)^3-\left(x-2\right)^3\)
\(=\left[\left(x+2\right)-\left(x-2\right)\right]\left[\left(x+2\right)^2+\left(x+2\right)\left(x-2\right)+\left(x-2\right)^2\right]\)
\(4x^3-36x=0\)
\(x.\left[\left(2x\right)^2-6^2\right]=0\)
\(x.\left(2x-6\right)\left(2x+6\right)=0\)
\(\Rightarrow\)\(\orbr{\begin{cases}x=0\\2x-6=0\end{cases}}\)hoặc \(2x+6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)hoặc \(x=-3\)
KL:...............................................
Bài 1:
\(36\left(x-5\right)^2-25\left(x-y+4\right)^2\)
\(=\left[6\left(x-5\right)\right]^2-\left[5\left(x-y+4\right)\right]^2\)
\(=\left[6\left(x-5\right)-5\left(x-y+4\right)\right]\left[6\left(x-5\right)+5\left(x-y+4\right)\right]\)
\(=\left(x+5y-50\right)\left(11x-5y-10\right)\)
Bài 2:
a) \(\left(4x-1\right)^2-4x+1=0\)
\(\left(4x-1\right)^2-\left(4x-1\right)=0\)
\(\left(4x-1\right)\left(4x-1-1\right)=0\)
\(\left(4x-1\right)\left(4x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x-1=0\\4x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{4}\\x=\frac{1}{2}\end{cases}}}\)
b) \(\left(3x\right)^2-\left(3x-1\right)^2=0\)
\(\left(3x-3x+1\right)\left(3x+3x-1\right)=0\)
\(6x-1=0\)
\(x=\frac{1}{6}\)
c) \(36x^2-25-\left(6x+5\right)\left(6x-5\right)=0\)
\(36x^2-25-36x^2+25=0\)
\(0=0\)( đúng với mọi x )
Bài 3 : xem lại đề
\(4x^2-28=0\)
\(\Leftrightarrow4\left(x^2-7\right)=0\)
\(\Leftrightarrow x^2-7=0\)
\(\Leftrightarrow x^2=7\)
\(\Leftrightarrow x=\pm\sqrt{7}\)
\(a,\Rightarrow4x\left(x^2-9\right)=0\\ \Rightarrow4x\left(x-3\right)\left(x+3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\\ \Rightarrow\left(2x-6\right)\left(4x-4\right)=0\\ \Rightarrow2\left(x-3\right)4\left(x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)
a) \(\Rightarrow4x\left(x^2-9\right)=0\)
\(\Rightarrow4x\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b) \(\Rightarrow\left(3x-5-x-1\right)\left(3x-5+x+1\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(4x-4\right)=0\)
\(\Rightarrow8\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)