Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2+4x-3=0\)
\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)
\(\left(2x+1\right)^2-2^2=0\)
\(\left(2x+1-2\right).\left(2x+1+2\right)=0\)
\(\left(2x-1\right).\left(2x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)
\(x^4-3x^3-x+3=0\)
\(x^3.\left(x-3\right)-\left(x-3\right)=0\)
\(\left(x-3\right).\left(x^3-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)
Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
\(x^2.\left(x-1\right)-4x^2+8x-4=0\)
\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)
\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)
\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)
\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)
\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)
\(\left(x-1\right).\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
Vậy \(\begin{cases}x=1\\x=2\end{cases}\)
Tham khảo nhé~
a) 2x2+3x-5=0
=> 2x2+5x-2x-5=0
=> x(2x+5)-(2x-5)=0
=> (2x-5)(x-1)=0
=> 2x-5=0, x-1=0
=> x=5/2; 1
\(2x^2+3x-5=0< =>2x^2-2+3x-3=0\)
\(< =>2\left(x+1\right)\left(x-1\right)-3\left(x-1\right)=0\)
\(< =>\left(x-1\right)\left(2x-1\right)=0< =>\orbr{\begin{cases}x=1\\x=\frac{1}{2}\end{cases}}\)
Trả lời:
a, ( x2 - 4x + 16 )( x + 4 ) - x ( x + 1 )( x + 2 ) + 3x2 = 0
<=> x3 + 4x2 - 4x2 - 16x + 16x + 64 - x ( x2 + 3x + 2 ) + 3x2 = 0
<=> x3 + 64 - x3 - 3x2 - 2x + 3x2 = 0
<=> 64 - 2x = 0
<=> 2x = 64
<=> x = 32
Vậy x = 32 là nghiệm của pt.
b, ( 8x + 2 )( 1 - 3x ) + ( 6x - 1 )( 4x - 10 ) = - 50
<=> 8x - 24x2 + 2 - 6x + 24x2 - 60x - 4x + 10 = - 50
<=> - 62x + 12 = - 50
<=> - 62x = - 62
<=> x = 1
Vậy x = 1 là nghiệm của pt.
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x2 - 16x - 34 = 10x2 + 3x - 34
=> 10x2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0
hoặc 10x - 19 = 0 => 10x = 19 => x = 19/10
Vậy x = 0 ; x = 19/10
Rút gọn hết ta được :
a/ 41x - 17 = -21
=> 41x = -4 => x = 4/41
b/ 34x - 17 = 0
=> 34x = 17
=> x = 17/34 = 1/2
c/ 19x + 56 = 52
=> 19x = -4
=> x = -4/19
d/ 20x 2 - 16x - 34 = 10x 2 + 3x - 34
=> 10x 2 - 19x = 0
=> x(10x - 19) = 0
=> x = 0 hoặc 10x - 19 = 0
=> 10x = 19
=> x = 19/10
Vậy x = 0 ; x = 19/10
a) 3x\(^2\)+8x+4=0
\(\Leftrightarrow3x^2+6x+2x+4=0\)
⇔ x( 3x + 2 ) + 2 ( 3x + 2 ) = 0
⇔ ( x + 2 ) ( 3x + 2 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-2}{3}\end{matrix}\right.\)
b) 4x\(^2\)-4x-3=0
\(\Leftrightarrow4x^2-6x+2x-3=0\)
⇔ 2x( 2x + 1 ) - 3( 2x + 1 ) = 0
⇔ ( 2x - 3 ) ( 2x + 1 ) = 0
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)
a) \(\left(x+6\right)^2-x\left(x+9\right)=0\)
\(\Leftrightarrow\)\(x^2+12x+36-x^2-9x=0\)
\(\Leftrightarrow\)\(3x+36=0\)
\(\Leftrightarrow\)\(x=-12\)
Vậy...
b) \(6x\left(2x+5\right)-\left(3x+4\right)\left(4x-3\right)=9\)
\(\Leftrightarrow\)\(12x^2+30x-12x^2-7x+12=9\)
\(\Leftrightarrow\)\(23x+12=9\)
\(\Leftrightarrow\)\(x=-\frac{3}{23}\)
Vậy
c) \(2x\left(8x+3\right)-\left(4x+1\right)=13\)
\(\Leftrightarrow\)\(16x^2+6x-4x-1=13\)
\(\Leftrightarrow\)\(16x^2+2x-14=0\)
\(\Leftrightarrow\)\(8x^2+x-7=0\)
\(\Leftrightarrow\)\(\left(x+1\right)\left(8x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-1\\x=\frac{7}{8}\end{cases}}\)
Vậy
d) \(\left(x-4\right)^2-x\left(x+4\right)=0\)
\(\Leftrightarrow\)\(x^2-8x+16-x^2-4x=0\)
\(\Leftrightarrow\)\(-12x+16=0\)
\(\Leftrightarrow\)\(x=\frac{4}{3}\)
Vậy
e) \(\left(x-2\right)^2-\left(2x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x^2-4x+4-2x^2+x+6=0\)
\(\Leftrightarrow\)\(-x^2-3x+10=0\)
\(\Leftrightarrow\)\(\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)
Vậy
a) x3 - 16x = 0
x(x2 - 16) = 0
=> x = 0 hoặc x2 - 16 = 0
x = 4
Vậy x = 0 hoặc x = 4
b) x4 -2x3 + 10x2 - 20x = 0
x3 (x - 2) + 10x(x - 2) = 0
(x - 2)(x3 + 10x) = 0
=> x - 2 = 0 hoặc x3 + 10x = 0
x = 2 x(x2 + 10) = 0
+ TH1: x = 0
+ TH2: x2 + 10 = 0
x2 = -10 (vô lí)
Vậy x = 2 hoặc x = 0
c) (2x - 3)2 = (x + 5)2
(2x)2 + 2 . 2x . 3 + 32 = x2 + 2.x.5 + 52
4x2 + 12x + 9 = x2 + 10x + 25
4x2 + 12x - x2 - 10x = 25 - 9
3x2 + 2x = 16
x(3x + 2) = 16
Đến đây bạn làm nốt câu c nhé!
a) 3x2 + 8x + 4 = 0
=> 3x2 + 6x + 2x + 4 = 0
=> 3x(x + 2) + 2(x + 2) = 0
=> (3x + 2)(x + 2) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=-1\end{cases}}\)
b) 4x2 - 4x - 3 = 0
=> 4x2 - 6x + 2x - 3 = 0
=> 2x(2x - 3) + (2x - 3) = 0
=> (2x + 1)(2x - 3) = 0
=> \(\orbr{\begin{cases}2x+1=0\\2x-3=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)
\(a,3x^2+8x+4=0\)
\(\Rightarrow3x^2+6x+2x+4=0\)
\(\Rightarrow3x\left(x+2\right)+2\left(x+2\right)=0\)
\(\Rightarrow\left(3x+2\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=-2\end{cases}}}\)
Vậy....