Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(2\left(x+5\right)-x^2-5x=0\)
\(\Rightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Rightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=2\end{cases}}\)
a) \(\Leftrightarrow x^2-3x+x-3=0\)
\(\Leftrightarrow x\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x-3=0\\x+1=0\end{array}\right.\)\(\Leftrightarrow\)\(\left[\begin{array}{nghiempt}x=3\\x=-1\end{array}\right.\)
a.
\(x^2-2x-3=0\)
\(x^2-2\times x+1^2-1^2-3=0\)
\(\left(x-1\right)^2-4=0\)
\(\left(x-1\right)^2=4\)
\(\left(x-1\right)^2=\left(\pm2\right)^2\)
\(x-1=\pm2\)
TH1:
x - 1 = 2
x = 2 + 1
x = 3
TH2:
x - 1 = -2
x = -2 + 1
x = -1
Vậy x = 3 hoặc x = -1
b.
\(2x^2+5x-3=0\)
\(2\times\left(x^2+2\times x\times\frac{5}{4}+\left(\frac{5}{4}\right)^2-\left(\frac{5}{4}\right)^2-\frac{3}{2}\right)=0\)
\(\left(x+\frac{5}{4}\right)^2-\frac{49}{16}=0\)
\(\left(x+\frac{5}{4}\right)^2=\frac{49}{16}\)
\(\left(x+\frac{5}{4}\right)^2=\left(\pm\frac{7}{4}\right)^2\)
\(x+\frac{5}{4}=\pm\frac{7}{4}\)
TH1:
x + 5/4 = 7/4
x = 7/4 - 5/4
x = 2/4
x = 1/2
TH2:
x + 5/4 = -7/4
x = -7/4 - 5/4
x = -12/4
x = -3
Vậy x = -3 hoặc x = 1/2
Chúc bạn học tốt ^^
Ko viết lại đề
Câu 1: chia ra làm 3 trường hợp
Câu 2:
\(\left(x+2-x+2\right)\left(x+2\right)=0\)
\(4\left(x+2\right)=0\)
\(\Rightarrow x+2=0\)
\(x=-2\)
1,
<=> \(\left(x-1\right)\left(x-2\right)^2=0\)
=> x=1 hoặc x=2
2,
<=>\(\left(x+1\right)\left(2x^2-3x+6\right)\)=0
=> x=-1
1.
<=> ( x -1 ) ( x - 2 ) 2 = 0
=> x = 1 hoặc x = 2
2.
<=> ( x + 1 ) ( 2x2 - 3x + 6 ) = 0
=> x = -1
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
\(\left(x^2+5x\right)^2-2\left(x^2+5x\right)-24=0\)
\(\Rightarrow\left(x^2+5x\right)^2-2\left(x^2+5x\right).1+1-25=0\)
\(\Rightarrow\left(x^2-5x+1\right)^2-25=0\)
\(\Rightarrow\left(x^2-5x+1+5\right)\left(x^2+5x+1-5\right)=0\)
\(\Rightarrow\left(x^2-5x+6\right)\left(x^2-5x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-5x+6=0\\x^2-5x-4=0\end{cases}}\)
TH1 : \(x^2-5x+6=0\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
Th2 : \(x^2-5x+4=0\Rightarrow\left(x-4\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)
a) 5x( x - 1 ) = x - 1
<=> 5x2 - 5x = x - 1
<=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0
<=> 5x2 - 5x - x + 1 = 0
<=> 5x( x - 1 ) - 1( x - 1 ) = 0
<=> ( x - 1 )( 5x - 1 ) = 0
<=> \(\orbr{\begin{cases}x-1=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=\frac{1}{5}\end{cases}}\)
b) 2( x + 5 ) - x2 - 5x = 0
<=> 2x + 10 - x2 - 5x = 0
<=> -x2 - 3x + 10 = 0
<=> -x2 - 5x + 2x + 10 = 0
<=> -x( x + 5 ) + 2( x + 5 ) = 0
<=> ( x + 5 )( 2 - x ) = 0
<=> \(\orbr{\begin{cases}x+5=0\\2-x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-5\\x=2\end{cases}}\)
c) x2 - 2x - 3 = 0
<=> x2 + x - 3x - 3 = 0
<=> x( x + 1 ) - 3( x + 1 ) = 0
<=> ( x + 1 )( x - 3 ) = 0
<=> \(\orbr{\begin{cases}x+1=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}\)
d) 2x2 + 5x - 3 = 0
<=> 2x2 - x + 6x - 3 = 0
,<=> x( 2x - 1 ) + 3( 2x - 1 ) = 0
<=> ( 2x - 1 )( x + 3 ) = 0
<=> \(\orbr{\begin{cases}2x-1=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}\)
a) 5x ( x - 1 ) = x - 1 <=> 5x2 - 5x - x + 1 = 0
<=> 5x2 - 6x + 1 = 0 <=> 5x2 - x - ( 5x - 1 ) = 0
<=> x ( 5x - 1 ) - ( 5x - 1 ) = 0 <=> ( x - 1 )( 5x - 1 ) = 0
<=> x = 1 hoặc x = 1/5
b) 2 ( x + 5 ) - x2 - 5x = 0 <=> 2 ( x + 5 ) - x ( x + 5 ) = 0
<=> ( 2 - x ) ( x + 5 ) = 0 <=> x = 2 hoặc x = -5
c) x2 - 2x - 3 = 0 <=> x2 + x - 3x - 3 = 0
<=> x ( x + 1 ) - 3 ( x + 1 ) = 0 <=> ( x - 3 ) ( x + 1 ) = 0
<=> x = 3 hoặc x = -1
d) 2x2 + 5x - 3 = 0
Ta có : delta = 52 - 4.2.3 = 25 - 24 = 1
Khi đó : x = -1 hoặc x = 3/2
a/ \(x\left(x^2-2x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\pm\sqrt{3}\\\end{matrix}\right.\)
b/ \(\Leftrightarrow2x^3-4x^2+6x-x^2+2x-3=0\)
\(\Leftrightarrow2x\left(x^2-2x+3\right)-\left(x^2-2x+3\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-2x+3\right)=0\)
c/ \(\Leftrightarrow3x^3-15x^2+9x+x^2-5x+3=0\)
\(\Leftrightarrow3x\left(x^2-5x+3\right)+\left(x^2-5x+3\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x^2-5x+3\right)=0\Rightarrow\left[{}\begin{matrix}x=-\frac{1}{3}\\x=\frac{5\pm\sqrt{13}}{2}\end{matrix}\right.\)
d/ \(x\left(x^2+6x-5\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\pm\sqrt{14}\end{matrix}\right.\)
2x3 + 5x2 + x - 2 = 0
<=> 2x3 + 2x2 + 3x2 + 3x - 2x - 2 = 0
<=> 2x2(x + 1) + 3x(x + 1) - 2(x + 1) = 0
<=> (x + 1)(2x2 + 3x - 2) = 0
<=> (x + 1)(2x2 + 4x - x - 2) = 0
<=> (x + 1)[2x(x + 2) -(x + 2)] = 0
<=> (x + 1)(x + 2)(2x - 1) = 0
<=> x + 1 = 0 hay x + 2 = 0 hay 2x - 1 = 0
<=> x = -1 x = -2 2x = 1
<=> x = 1/2