Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\left(1-\frac{1}{99}\right)-x=-\frac{100}{99}\)
\(\Rightarrow\frac{98}{99}-x=-\frac{100}{99}\)
\(\Rightarrow x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)
\(\Rightarrow x=\frac{198}{99}=2\)
Vậy x = 2
mình làm được bài tìm x
x.(2/1.3+2/3.5+2/5.7+...+2/97.99)-x=-100/99
x.(1-1/3+1/3-1/4+1/4-1/5+1/5+...+1/97-1/97-1/99)-x=-100/99
x.(1-1/99)-x=-100/99
x.98/99-x=-100/99
x.98/99=-100/99+x
x.x=-100/99-98/99
2x=-198/99
x=-198/99/2
x=-1
\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right)-x=-\dfrac{100}{99}\)
\(\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)-x=-\dfrac{100}{99}\)
\(\left(1-\dfrac{1}{99}\right)-x=-\dfrac{100}{99}\)
\(\dfrac{98}{99}-x=-\dfrac{100}{99}\)
\(x=\dfrac{98}{99}-\left(-\dfrac{100}{99}\right)\)
\(x=\dfrac{198}{99}\)
Vậy \(x=\dfrac{198}{99}\)
Ta có :
\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(\left(1-\frac{1}{99}\right)-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(\frac{98}{99}-x=\frac{-100}{99}\)
\(\Leftrightarrow\)\(x=\frac{98}{99}+\frac{100}{99}\)
\(\Leftrightarrow\)\(x=\frac{198}{99}\)
\(\Leftrightarrow\)\(x=2\)
Vậy \(x=2\)
Chúc bạn học tốt ~
\(\frac{x}{1.3}+\frac{x}{3.5}+\frac{x}{5.7}+....+\frac{x}{97.99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}.\frac{98}{99}=\frac{49}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{49}{99}\div\frac{98}{99}\)
\(\Leftrightarrow\frac{x}{2}=\frac{1}{2}\)
\(\Leftrightarrow x=\frac{1}{2}\times2=1\)
\(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+...+\frac{x}{97\cdot99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=\frac{97}{99}\)
\(\Rightarrow\frac{x}{2}\left[1-\frac{1}{99}\right]=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}\cdot\frac{98}{99}=\frac{49}{99}\)
\(\Rightarrow\frac{x}{2}=\frac{1}{2}\)
=> x = 1/2 * 2 = 1
=>\(T=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}...\frac{98^2}{97.99}.\frac{99^2}{98.100}\)
=>\(T=\frac{2^2.3^2.4^2...98^2.99^2}{1.3.2.4.3.5...97.99.98.100}\)
Trông thì khó vậy nhưng thực ra ko khó đâu, bạn chỉ việc rút gọn từ trên tử xuống dưới mẫu là xong
=>\(T=\frac{2.99}{1.100}=\frac{99}{50}=1\frac{49}{50}\)
\(=\frac{2.2}{1.3}.\frac{3.3}{3.5}....\frac{98.98}{97.99}.\frac{99.99}{98.100}\)
\(=\frac{2.3.4....98.99}{1.3.5...97.98}.\frac{2.3.4....98.99}{3.5.7...99.100}\)
rút gọn đi có :
\(\frac{99}{1}.\frac{2}{100}=99.\frac{1}{50}=\frac{99}{50}\)