Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: 2x + 2x+3 = 144
2x.(1+23) = 144
2x.9 = 144
2x = 16
x = 4
a) \(2^x+2^{x+5}=144\)
\(\Rightarrow2^x+2^x\cdot2^5=144\)
\(\Rightarrow2^x+2^x\cdot32=144\)
\(\Rightarrow2^x\left(1+32\right)=144\)
\(\Rightarrow2^x\cdot33=144\)
\(\Rightarrow2^x=144:33\)
\(\Rightarrow2^x=\frac{48}{11}\)
\(\Rightarrow x\in\varnothing\)
Vậy không tìm được x thỏa mãn đề bài
b) \(|x+1|+|x+3|+|x+5|=7x\)
Ta có: \(\hept{\begin{cases}|x+1|\ge0\forall x\\|x+3|\ge0\forall x\\|x+5|\ge0\forall x\end{cases}\Rightarrow|x+1|+|x+3|+|x+5|\ge0\forall x\Rightarrow7x\ge0\forall x}\)
\(\Rightarrow|x+1|+|x+3|+|x+5|=x+1+x+3+x+5=7x\)
\(\Rightarrow\left(x+x+x\right)+\left(1+3+5\right)=7x\)
\(\Rightarrow3x+9=7x\)
\(\Rightarrow7x-3x=9\)
\(\Rightarrow4x=9\)
\(\Rightarrow x=\frac{4}{9}\)
Vậy x=\(\frac{4}{9}\)
\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x^{\left(1\right)}\)
Ta có \(\left|x+1\right|\ge0;\left|x+3\right|\ge0;\left|x+5\right|\ge0\)
\(\Rightarrow7x\ge0\Rightarrow x\ge0\)
Từ (1)\(\Rightarrow\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=7x\)
\(3x+9=7x\)
\(3x-7x=-9\)
\(-4x=-9\)
\(x=\frac{9}{4}\)
3^ x -1 = 1/243
3^x =1/243 +1
3^x = 244 / 243
Ta thấy đây ko phải lũy thừa của 3 => Ko có x thỏa mãn
81^-2x . 27^x =9^5
81^-2 . 81^x . 27^x =9^5
1/9^4 . (81.27)^x =9 ^5
3^6x = 9^5 : 1/9^4
3^6x = 9^9
3^6x = 3^18
=> 6x =18
x=3
2^x +2^x +3 =144
2.(2^x) =141
2^x+1 = 141
Ta thấy 141 ko phải lũy thừa của 2 => ko có x thỏa mãn
a) (x - 1)2 + (y + 2)2 = 0
vì (x - 1)2 \(\ge\) 0, (y + 2)2 \(\ge\) 0
=> để (x - 1)2 + (y + 2)2 = 0
thì (x - 1)2 = 0 và (y + 2)2 = 0
=> x - 1 = 0 và y + 2 = 0
=> x = 1 và y = -2
b) 2x + 2x + 3 = 144
=> 2x . 1 + 2x . 1 = 144 - 3 = 141
=> 2x . 2 = 141
=> 2x = 141 : 2 = 141/2
=> x ko tồn tại