Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) x2 - 9x = 0
=> x.(x - 9) = 0
=> \(\orbr{\begin{cases}x=0\\x-9=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x=9\end{cases}}\)
2) x4 - 4x2 = 0
=> x2.(x2 - 4) = 0
=> \(\orbr{\begin{cases}x^2=0\\x^2-4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)=> \(\orbr{\begin{cases}x=0\\x\in\left\{2;-2\right\}\end{cases}}\)
3) x2 - 4x + 3 = 0
=> x2 - x - 3x + 3 = 0
=> x.(x - 1) - 3.(x - 1) = 0
=> (x - 1).(x - 3) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
\(\left(3x-2\right)\left(x+6\right)\left(x^2+5\right)=0\)
\(TH1:3x-2=0\Leftrightarrow3x=2\Leftrightarrow x=\frac{2}{3}\)
\(TH2:x+6=0\Leftrightarrow x=-6\)
\(TH3:x^2+5=0\Leftrightarrow x^2=5\Leftrightarrow x=\sqrt{5}\)( ns vô nghiệm cx ko sai nha )
\(\left(2x+5\right)^2=\left(3x-1\right)^2\)
\(2x+5=3x-1\)
\(2x-3x=-1-5\)
\(-1x=-6\)
\(x=6\)
a. \(\left(3x-5\right)^2-\left(x+1\right)^2=0\Leftrightarrow\left(3x-5+x+1\right)\left(3x-5-x-1\right)=0\Leftrightarrow\left(4x-4\right)\left(2x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}4x-4=0\\2x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy ...
b. \(\left(5x-4\right)^2-49x^2=0\Leftrightarrow\left(5x-4\right)^2-\left(7x\right)^2=0\Leftrightarrow\left(5x-4-7x\right)\left(5x-4+7x\right)=0\Leftrightarrow\left(-2x-4\right)\left(12x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}-2x-4=0\\12x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy ...
c. \(4x^3-36x=0\Leftrightarrow4x\left(x^2-9\right)=0\Leftrightarrow4x\left(x-3\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}4x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ...
d. \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\Leftrightarrow\left(2x+3\right)\left(x-1\right)-\left(2x-3\right)\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-2x+3\right)=0\Leftrightarrow6\left(x-1\right)=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy ...
1) \(\left(5x-4\right)\left(4x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)
2) \(\left(4x-10\right)\left(24+5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)
3) \(\left(x-3\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)
a) x2 - 2x + 4x - 8 = 0
=> x.(x - 2) + 4.(x - 2) = 0
=> (x - 2).(x + 4) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
b) x(x + 3) - 3x - 9 = 0
=> x.(x + 3) - 3.(x + 3) = 0
=> (x + 3).(x - 3) = 0
=> \(\orbr{\begin{cases}x+3=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
c) x2 - 6x + 5 = 0
=> x2 - x - 5x + 5 = 0
=> x.(x - 1) - 5.(x - 1) = 0
=> (x - 1).(x - 5) = 0
=> \(\orbr{\begin{cases}x-1=0\\x-5=0\end{cases}}\)=> \(\orbr{\begin{cases}x=1\\x=5\end{cases}}\)
1/\(x^2-2x+4x-8=0\)
=>\(x\left(x-2\right)+4\left(x-2\right)=0\)
=>\(\left(x-4\right)\left(x-2\right)=0\)
=>\(\orbr{\begin{cases}x-4=0\\x-2=0\end{cases}}\)=>\(\orbr{\begin{cases}x=4\\x=2\end{cases}}\)
2/\(x\left(x+3\right)-3x-9=0\)
=>\(x\left(x+3\right)-3\left(x+3\right)=0\)
=>\(\left(x-3\right)\left(x+3\right)=0\)
=>\(\orbr{\begin{cases}x-3=0\\x+3=0\end{cases}}\)=>\(\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
3/\(x^2-6x+5=0\)
=>\(x^2-x-5x+5=0\)
=>\(x\left(x-1\right)-5\left(x-1\right)=0\)
=>\(\left(x-5\right)\left(x-1\right)=0\)
=>\(\orbr{\begin{cases}x-5=0\\x-1=0\end{cases}}\)=>\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)