Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: (x-6) chia hết cho x-5
=>(x-5)+56 chia hết cho x-5
=>(x-5)-1 chia hết cho x-5
Mà x-1 chia hết cho x-1
=>1 chia hết cho x1
=>x-1 thuộc Ư(1)={1;-1}
=>x thuộc {2;0}
b)
=>x+1 và xy-1 thuộc Ư(3)={1;3;-1;-3}
Ta có bảng kết quả:
x+1 | 1 | 3 | -1 | -3 |
xy-1 | 3 | 1 | -3 | -1 |
x | 0 | 2 | -2 | -4 |
y | Không có | 1 | 1 | 0 |
Vậy (x;y) thuộc {(2;1);(-2;1);(-4;0)}
a. |x - 5| + 5 = x
<=> |x - 5| = x - 5
<=> x - 5\(\ge\)0
<=> x\(\ge\)5
b. |x - 5| - 5 = -x
<=> |x - 5| = -x + 5
<=> |x - 5| = - (x - 5)
<=> x - 5\(\le\)0
<=> x\(\le\)5
c. |5 - x| + 5 = x
<=> |5 - x| = -(5-x)
<=> 5 - x \(\le\)0
<=> x\(\ge\)5
( x - 5 )4 = ( x - 5 )6
=> ( x - 5 )6 - ( x - 5 )4 = 0
=> ( x - 5 )4 . [ ( x - 5 )2 - 1 ] = 0
=> ( x - 5 )4 = 0 hoặc ( x - 5 )2 + 1 = 0
TH1 : ( x - 5 )4 = 0 => x - 5 = 0 => x = 5
TH2 : ( x - 5 )2 + 1 = 0
=> ( x - 5 )2 = 1
=> x - 5 = 1 hoặc -1
=> x = 6 hoặc 4
\(4\left(x-5\right)-7\left(5-x\right)+10\left(5-x\right)=-3\)
\(\Leftrightarrow4x-20-35+7x+50-10x=0\)
\(\Leftrightarrow x-5=0\Leftrightarrow x=5\)
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
Các bạn giúp mình giải với nhé! Đúng thì mình k đúng nhé. Cảm ơn các bạn nhiều lắm. Yêu cả nhà.
\(1.\left(x-5\right)^{23}.\left(y+2\right)^7=0\)
\(\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0\\\left(y+2\right)^7=0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-5\right)^{23}=0^{23}\\\left(y+2\right)^7=0^7\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x-5=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0+5\\y=0-2\end{cases}}}\)\(\Rightarrow\hept{\begin{cases}x=5\\y=-2\end{cases}}\)
Vậy \(\left(x;y\right)=\left(5;-2\right)\)
\(\left|x+5\right|=x+5\)
\(\Rightarrow x+5\ge0\Leftrightarrow x\ge-5\)
Vậy...
Vì |x + 5| = x + 5 \(\Rightarrow\) x + 5 = x + 5
\(\Rightarrow\) 0x = 0 đúng, \(\forall\)x