Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\Leftrightarrow x=-2\)
b) \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{1}{5}\end{array}\right.\)
c) \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-5\\x=2\end{array}\right.\)
d) \(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=8\\x=-\frac{2}{3}\end{array}\right.\)
e) \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow3x\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
f) \(x^3+x^2-4x=4\)
\(\Leftrightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x=2\\x=-2\end{array}\right.\)
a. \(2x\left(x+5\right)-x\left(3+2x\right)=26\Leftrightarrow2x^2+10x-3x-2x^2=26\Leftrightarrow7x=26\Leftrightarrow x=\dfrac{26}{7}\)
Vậy \(x=\dfrac{26}{7}\)
b. \(5x\left(x-1\right)=x-1\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\5x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
c. \(2\left(x+5\right)-x^2-5x=0\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\Leftrightarrow\left(x+5\right)\left(2-x\right)=0\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-5\\x=2\end{matrix}\right.\)
d. \(\left(2x-3\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\Leftrightarrow\left(x-8\right)\left(3x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-8=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\3x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=8\\x=-\dfrac{2}{3}\end{matrix}\right.\)
e. \(3x^3-48x=0\Leftrightarrow3x\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}3x=0\\x^2-16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=0\\x=\pm4\end{matrix}\right.\)
f. \(x^3+x^2-4x=4\Leftrightarrow x^3+x^2-4x-4=0\Leftrightarrow\left(x^2-4x+4\right)+\left(x^3-8\right)=0\Leftrightarrow\left(x-2\right)^2+\left(x-2\right)\left(x^2+2x+4\right)=0\Leftrightarrow\left(x-2\right)\left(x-2+x^2+2x+4\right)=0\left(x-2\right)\left(x^2+3x+2\right)=0\Leftrightarrow\left(x-2\right)\left(x^2+x+2x+2\right)=0\Leftrightarrow\left(x-2\right)\left[x\left(x+1\right)+2\left(x+1\right)\right]=0\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+1=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\\x=-2\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-1\\x=\pm2\end{matrix}\right.\)
g. \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
h. \(x^2-4x+8=2x-1\Leftrightarrow x^2-4x+8-2x+1=0\Leftrightarrow x^2-6x+9=0\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(x=3\)
__________________________Chúc bạn học tốt____________________________
\(3x^3-48x=8\)
\(3x\left(x^2-16\right)=0\)
\(3x\left(x-4\right)\left(x+4\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-4=0\\x+4=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=4\\x=-4\end{array}\right.\)
\(x^2-2x=24\)
\(x^2-2x-24=0\)
\(x^2-6x+4x-24=0\)
\(x\left(x-6\right)+4\left(x-6\right)=0\)
\(\left(x+4\right)\left(x-6\right)=0\)
\(\left[\begin{array}{nghiempt}x+4=0\\x-6=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=-4\\x=6\end{array}\right.\)
a, 5x(x - 1) - (1 - x) = 0
=> 5x(x - 1) + (x - 1) = 0
=> (x - 1)(5x + 1) = 0
=> x - 1 = 0 hoặc 5x - 1 = 0
=> x = 1 hoặc x = \(\dfrac{1}{5}\)
b, (x - 3)2 - (x + 3)2 = 24
=> (x - 3 + x + 3)(x - 3 - x - 3) = 24
=> 2x. (-6) = 24
=> -12x = 24
=> x = -2
c, 2x(x2 - 4) = 0
=> 2x(x - 2)(x + 2) = 0
\(\Rightarrow\left[{}\begin{matrix}2x=0\\x-2=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)
d, 2(x + 5)2 - x2 - 5x = 0
=> 2(x + 5)2 - x(x + 5) = 0
=> (x + 5) [2(x + 5) - x] = 0
=> (x + 5) (2x - 10 - x) = 0
=> (x + 5) ( x - 10) = 0
\(\Rightarrow\left[{}\begin{matrix}x+5=0\\x-10=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-5\\x=10\end{matrix}\right.\)
e, (2x - 3)2 - (x +5)2 = 0
=> (2x - 3 + x + 5) (2x - 3 - x - 5) = 0
=> (3x + 2)(x - 8) = 0
\(\Rightarrow\left[{}\begin{matrix}3x+2=0\\x-8=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{-2}{3}\\x=8\end{matrix}\right.\)
f, 3x2 - 48x = 0
=> 3x(x - 16) = 0
\(\Rightarrow\left[{}\begin{matrix}3x=0\\x-16=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
chúc bạn học tốt!
1,=\(x^2-3x-2x^2+6x=-x^2+3x\)
2,=\(3x^2-x-5+15x=3x^2+14x-5\)
3,=\(5x+15-6x^2-6x=-6x^2-x+15\)
4,=\(4x^2+12x-x-3=4x^2+11x-3\)
5: =>(x+5)^3=0
=>x+5=0
=>x=-5
6: =>(2x-3)^2=0
=>2x-3=0
=>x=3/2
7: =>(x-6)(x-10)=0
=>x=10 hoặc x=6
8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)
=>(x-4)^3=0
=>x-4=0
=>x=4
a. (3x-4)2=9(x-1)(x+1)
<=> 9x2-24x+16=9x2-9
<=> -24x=-25
<=> x=\(\dfrac{25}{24}\)
Vậy S=\(\left\{\dfrac{25}{24}\right\}\)
b. (4x-5)2-4(x-2)2=0
<=> (4x-5)2-(2x-4)2=0
<=> (4x-5-2x+4)(4x-5+2x-4)=0
<=> (2x-1)(6x-9)=0
<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)
Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)
c. |x2-x|= -2x
Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)
=> x2-x= -2x
<=> x2-x+2x=0
<=> x2+x=0
<=> x(x+1)=0
<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))
Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1
=> x-x2= -2x
<=> x-x2+2x=0
<=> 3x-x2=0
<=> x(3-x)=0
x=0 (thỏa mãn điều kiện x<1)
hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)
Vậy S=\(\left\{0\right\}\)
d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
ĐKXĐ: \(x\ne\pm3\)
Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)
<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)
=> x2+6x+9-48x3=x2-6x+9
<=> 12x-48x3=0
<=> 12x(1-4x2)=0
<=> 12x(1-2x)(1+2x)=0
<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{0;\pm0,5\right\}\)
a ) ( 3x - 4 )2 = 9 (x-1)(x+1)
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )
\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9
\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16
\(\Leftrightarrow\) -24x = -24
\(\Leftrightarrow\) x = 1
Vậy phương trình có nghiệm x = 1 .
a, 2x(x-5) - x ( 3 + 2x ) = 26
=> 2x^2 - 10x - 3x - 2x ^ 2 = 26
=> - 13 x = 26
=> x = -2
a, \(2x\left(x-5\right)-x\left(3+2x\right)=26\)
\(\Leftrightarrow2x^2-10x-3x-2x^2=26\)
\(\Leftrightarrow-13x=26\)
\(\Leftrightarrow x=-2\)
Vậy x = -2
b, \(3x^3-48x=0\)
\(\Leftrightarrow3x\left(x^2-16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x^2-16=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4;x=-4\end{cases}}\)
Vậy x = 0 hoặc x = 4 hoặc x = -4