Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4+\sqrt{x^2+2012}=2012.\)
\(\Leftrightarrow x^4=-\sqrt{x^2+2012}+2012.\)
\(\Leftrightarrow x^4+x^2+\frac{1}{4}=x^2+2012-\sqrt{x^2+2012}+\frac{1}{4}.\)
\(\Leftrightarrow\left(x^2+\frac{1}{2}\right)^2=\left(\sqrt{x^2+2012}-\frac{1}{2}\right)^2.\)
Đến đây chia 2 TH ra là ok
a,
\(\Leftrightarrow\sqrt{1-x}=\frac{x-1}{\sqrt{6-x}+\sqrt{-5-2x}}\)
\(\Leftrightarrow-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{1-x}=\sqrt{6-x}-\sqrt{-5-2x}\\-\sqrt{1-x}=\sqrt{6-x}+\sqrt{-5-2x}\end{cases}}\)
b,tự nàm
c,
\(\Leftrightarrow64x^2-64x-64=64\sqrt{8x+1}\)
\(\Leftrightarrow\left(8x+1\right)^2=10\left(8x+1\right)+64\sqrt{8x+1}+55\)
đặt \(\sqrt{8x+1}=a\)
=>a4=10a2+64a+55
nhận thấy phương trình có dạng x4=ax2+bx+c
tìm số m sao cho b2-4(2m+a)(m2+c)=0
sau đó đưa về (x2+m)2=k2 với k là 1 số bất kì,sau đó giải ra
b)đk \(x\ge1\)
\(\sqrt{1+x^2+\frac{x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}=\sqrt{\frac{\left(x+1\right)^2+x^2.\left(x+1\right)^2+x^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{x^4+2x^3+3x^2+2x+1}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\sqrt{\frac{\left(x^2+x+1\right)^2}{\left(x+1\right)^2}}+\frac{x}{x+1}\)
\(=\frac{x^2+x+1}{x+1}+\frac{x}{x+1}=x+1\)
\(\Rightarrow\sqrt{1+2012^2+\frac{2012^2}{2013^2}}+\frac{2012}{2013}=2013\)
\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2013\)
\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2013\)
\(\Leftrightarrow x+\left|x-2\right|=2014\)
giai 2 pt
pt1 x+x-2=2014
x=1008
pt2 x+2-x=2014(vô lý)
Ta có : \(x=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}-2\sqrt{3}}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}\sqrt{\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{3}+\sqrt{2}}.\dfrac{\sqrt{\sqrt{3}+\sqrt{2}}}{\sqrt{\sqrt{3}-\sqrt{2}}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}}\)
\(=\dfrac{\sqrt{2}}{\sqrt{1}}=\sqrt{2}\)
Thay \(x=\sqrt{2}\) vào biểu thức A ta được :
\(A=\left(\sqrt{2}^3-2\sqrt{2}+1\right)^{2012}=1^{2012}=1\)
Vậy \(A=1\)
\( a)A = \dfrac{{a - \sqrt a - 6}}{{4 - a}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{a + 2\sqrt a - 3\sqrt a - 6}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = \dfrac{{\left( {\sqrt a + 2} \right)\left( {\sqrt a - 3} \right)}}{{\left( {2 - \sqrt a } \right)\left( {2 + \sqrt a } \right)}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 3}}{{\sqrt a - 2}} - \dfrac{1}{{\sqrt a - 2}}\\ A = - \dfrac{{\sqrt a - 2}}{{\sqrt a - 2}} = - 1 \)
\( b)B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{x - 1}}\\ B = \dfrac{1}{{\sqrt x - 1}} + \dfrac{1}{{\sqrt x + 1}} - \dfrac{2}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{\sqrt x + 1 + \sqrt x - 1 - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\sqrt x - 2}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}}\\ B = \dfrac{{2\left( {\sqrt x - 1} \right)}}{{\left( {\sqrt x - 1} \right)\left( {\sqrt x + 1} \right)}} = \dfrac{2}{{\sqrt x + 1}} \)
\(A=\sqrt{x^2-2x+1}+\sqrt{x^2+4x+4}\)
\(=\sqrt{\left(x-1\right)^2}+\sqrt{\left(x+2\right)^2}\)
\(=|1-x|+|x+2|\ge|1-x+x+2|=3\)
\(x\sqrt{x+\frac{1}{2}+\sqrt{x+\frac{1}{4}}}=2\)
\(\Leftrightarrow x\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}+\frac{1}{2}=2\)
\(\Leftrightarrow x\sqrt{x+\frac{1}{4}}=\frac{3}{2}\)
Làm nốt
Đặt \(\sqrt{x^2+2012}=t>0\Rightarrow2012=t^2-x^2\)
Pt trở thành:
\(x^4+t=t^2-x^2\)
\(\Leftrightarrow x^4-t^2+x^2+t=0\)
\(\Leftrightarrow\left(x^2+t\right)\left(x^2-t+1\right)=0\)
\(\Leftrightarrow x^2+1=t\)
\(\Leftrightarrow x^2+1=\sqrt{x^2+2012}\)
\(\Leftrightarrow x^4+2x^2+1=x^2+2012\)
\(\Leftrightarrow x^4+x^2-2011=0\)
\(\Leftrightarrow x=\pm\sqrt{\dfrac{-1+\sqrt{8045}}{2}}\)