K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 10 2022

$y^2+13\geq 0+13>0$ với mọi $y$ rồi bạn. Bạn coi lại đề.

9 tháng 9 2017

x2+2x+y2-6y+4z^2-4z+11=0

\(\Leftrightarrow\left(x^2+2x+1\right)+\left(y^2-6y+9\right)+\left(4z^2-4z+1\right)=0\)

<=>(x+1)2+(y-3)2+(2z-1)2=0

Vì (x+1)2\(\ge\)0;(y-3)2\(\ge\)0;(2z-1)2\(\ge\)0 => (x+1)2+(y-3)2+(2z-1)2\(\ge\)0

Dấu "=" xảy ra khi (x+1)2=(y-3)2=(2z-1)2=0 <=> x+1=y-3=2z-1=0 <=> x=-1;y=3;z=1/2

3 tháng 8 2017

\(\Leftrightarrow x^2+2x+1+y^2+6y+9=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y+3\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=-3\end{cases}}}\)

vậy \(x=-1;y=-3\)

15 tháng 7 2018

.

giúp mk đi. Mk đag cần gấp

29 tháng 6 2019

a) \(\Leftrightarrow4x^2+2y^2+4xy-20x-8y+26=0\)

\(\Leftrightarrow4x^2+4x\left(y-5\right)+\left(y-5\right)^2-\left(y-5\right)^2+2y^2-8y+26=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+y^2+2y+1=0\)

\(\Leftrightarrow\left(2x+y-5\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+y-5=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-1\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\left(x^2-4x+4\right)+\left(y^2+6y+9\right)+\left(z^2-2z+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2+\left(z-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+3=0\\z-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-3\\z=1\end{matrix}\right.\) ( TM )

c) \(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2xz\right)+\left(x^2+2x+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+1\right)^2+\left(z-2\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+z=0\\x+1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=-1\\z=2\end{matrix}\right.\) ( TM )

21 tháng 9 2016

Ta có x2 - 2xy + 2y2 -2x + 6y+5 =0

<=> (x2 - 2xy + y2) - (2x - 2y) + (y2 + 4y + 4) + 1 = 0

<=> [(x - y)2 - 2(x - y) + 1] + (y + 2)2 = 0

<=> (x - y - 1)2 + (y + 2)2 = 0

<=> \(\hept{\begin{cases}x-y-1=0\\2\:+y=0\end{cases}}\)

<=> (x; y) = (-1; -2)

31 tháng 8 2020

x2 - 2xy + 2y2 + 2x - 6y + 4 = 0

<=> [ ( x2 - 2xy + y2 ) + 2( x - y ) + 1 ] + ( y2 - 4y + 4 ) - 1 = 0

<=> [ ( x - y )2 + 2( x - y ) + 1 ] + ( y - 2 )2 - 1 = 0

<=> ( x - y + 1 )2 + ( y - 2 )2 - 1 = 0

<=> ( x - y + 1 )2 + ( y - 2 )2 = 1

Nhận thấy rằng VT là tổng của hai bình phương 

=> VP cũng phải là tổng của hai bình phương

Ta có : 1 = 12 + 02

               = (-1)2 + 02

Ta xét 4 trường hợp sau :

1.\(\hept{\begin{cases}\left(x-y+1\right)^2=1^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)

2. \(\hept{\begin{cases}\left(x-y+1\right)^2=\left(-1\right)^2\\\left(y-2\right)^2=0^2\end{cases}}\Rightarrow x=y=2\)

3. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=1^2\end{cases}\Rightarrow}\hept{\begin{cases}x=2\\y=3\end{cases}}\)

4. \(\hept{\begin{cases}\left(x-y+1\right)^2=0^2\\\left(y-2\right)^2=\left(-1\right)^2\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=1\end{cases}}\)

Vậy ( x ; y ) = { ( 0 ; 2 ) , ( 2 ; 2 ) , ( 2 ; 3 ) , ( 0 ; 1 ) }

31 tháng 8 2020

\(x^2-2xy+y^2+2x-6y+4=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2-2y+2x+1\right)+\left(y^2-4y+4\right)=1\)

\(\Leftrightarrow\left(x-y+1\right)^2+\left(y-2\right)^2=1\)

Mà \(x;y\in Z\)\(\left(x-y+1\right)^2\ge0;\left(y-2\right)^2\ge0\)

pt <=> \(\orbr{\begin{cases}\left(x-y+1\right)^2=0\\\left(y-2\right)^2=1\end{cases}}\) hoặc \(\orbr{\begin{cases}\left(x-y+1\right)^2=1\\\left(y-2\right)^2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-y=-1\\y=3\end{cases}}\) hoặc \(\orbr{\begin{cases}x-y=0\\y=2\end{cases}}\)

<=> x = 2 ; y = 3 hoặc x = y = 2 ( tm x ; y thuộc Z )

Vậy các cặp số x ; y thỏa mãn pt trên là : ( 2 ; 3 ) ; ( 2 ; 2 ) 

10 tháng 10 2017

Ta co pt \(\Leftrightarrow x^2-4x+4+y^2+6y+9=0\)

\(\Leftrightarrow\left(x-2\right)^2+\left(y+3\right)^2=0\)

mà \(\hept{\begin{cases}\left(x-2\right)^2\ge0\\\left(y+3\right)^2\ge0\end{cases}}\)

Nên dấu \(=\)xảy ra khi \(\hept{\begin{cases}\left(x-2\right)^2=0\\\left(y+3\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}}\)

Vậy \(x=2;y=-3\)

10 tháng 10 2017

\(^{x^2-4x+4+y^2+6y+9=0}\)0

\(\left(x-2\right)^2+\left(y+3\right)^2=0\)

x=2 va y=-3

5 tháng 9 2016

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0  

(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0  

( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0

( x + y + z)2 = 0 ;

( x + 5)2 = 0 ;

(y + 3)2 = 0

vậy x = - 5 ; y = -3; z = 8 

16 tháng 6 2017

Tìm x, y, z biết rằng: 2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0

                                Giải

2x2 + 2y2 + z2 + 2xy + 2xz + 2yz + 10x + 6y + 34 = 0 

(x2 + y2 + z2 + 2xy + 2xz + 2yz) + (x2 + 10x + 25) + (y2+ 6y + 9) = 0

 ( x + y + z)2 + ( x + 5)2 + (y + 3)2 = 0 

( x + y + z)2 = 0 ; ( x + 5)2 = 0 ; (y + 3)2 = 0

x = - 5 ; y = -3; z = 8