Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^8=\left(x-2\right)^6\)
\(\Leftrightarrow\left(x-2\right)^8-\left(x-2\right)^6=0\)
\(\Leftrightarrow\left(x-2\right)^6\left[\left(x-2\right)^2-1\right]=0\)
\(\Leftrightarrow\left(x-2\right)^6\left(x-3\right)\left(x-1\right)=0\)
\(\Rightarrow x=2;x=3;x=1\)
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(\Leftrightarrow-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
=> x \(\in\) {-1;0;1;2;3;4;5;6}
\(\frac{3}{4}-\frac{5}{6}\le\frac{x}{12}< 1-\left(\frac{2}{3}-\frac{1}{4}\right)\)
\(\Leftrightarrow\)\(\frac{9-10}{12}\le\frac{x}{12}< 1-\left(\frac{8-3}{12}\right)\)
\(\Leftrightarrow\)\(-\frac{1}{12}\le\frac{x}{12}< \frac{7}{12}\)
\(\Leftrightarrow-1\le x< 7\)
Mà x nguyên
=>x={-1;0;1;2;3;4;5;6}
a) \(f\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5\)
\(g\left(x\right)=x^4+3x^3-\frac{2}{3}x^2-2x-10\)
b) \(f\left(x\right)+g\left(x\right)=-x^4+3x^3-\frac{1}{3}x^2+2x+5+x^4+3x^3-\frac{2}{3}x^2-2x-10\)
\(=6x^3-x^2-5\)
c) +) Thay x=1 vào đa thức f(x) + g(x) ta được :
\(6.1^3-1^2-5=0\)
Vậy x=1 là nghiệm của đa thức f(x) + g(x)
+) Thay x=-1 vào đa thức f(x) + g(x) ta được :
\(6.\left(-1\right)^3-\left(-1\right)^2-5=-10\)
Vậy x=-1 ko là nghiệm của đa thức f(x) + g(x)
\(x=\left(\frac{3}{4}\right)^{3-2}\)
\(=\left(\frac{3}{4}\right):\left(\frac{-2}{3}\right)^3\)
\(=\frac{-81}{32}\)
Chúc bạn học tốt ^^!
\(\left(\frac{1}{3}-\frac{3}{2}x\right)^2=\frac{9}{4}\)
\(=>\left(\frac{1}{3}-\frac{3}{2}x\right)^2=\left(\frac{3}{2}\right)^2\)
\(=>\frac{1}{3}-\frac{3}{2}x=\frac{3}{2}\)
\(=>\frac{3}{2}x=\frac{1}{3}-\frac{3}{2}=-\frac{7}{6}\)
\(=>x=-\frac{7}{6}:\frac{3}{2}=-\frac{7}{9}\)
ta có : \(\left|x^2+|6x-2|\right|=x^2+4\)
\(\Leftrightarrow x^2+\left|6x-2\right|=x^2+4\) (vì \(x^2+\left|6x-2\right|\ge0\) với mọi giá trị của \(x\) )
\(\Leftrightarrow\left|6x-2\right|=4\)
th1: \(6x-2\ge0\Leftrightarrow x\ge\dfrac{1}{3}\)
\(\Rightarrow\) \(\left|6x-2\right|=4\Leftrightarrow6x-2=4\Leftrightarrow6x=6\Leftrightarrow x=1\left(tmđk\right)\)
th2: \(6x-2< 0\Leftrightarrow x< \dfrac{1}{3}\)
\(\Rightarrow\left|6x-2\right|=4\Leftrightarrow2-6x=4\Leftrightarrow6x=-2\Leftrightarrow x=\dfrac{-1}{3}\left(tmđk\right)\) vậy \(x=1\) hoặc \(x=\dfrac{-1}{3}\)bn ui tmdk là j v