Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, ( x2 + x ) ( x2 + x + 1 )=6
=> ( x2 + x ) ( x2 + x + 1) - 6 = 0
=> ( x - 1 ) ( x + 2 ) ( x2 + x +3 ) = 0
=> x - 1= 0 => x= 1
=> x + 2 = 0 => x = -2
=> x2 + x + 3 = 0 => 12 - 4 ( 1.3 ) = -11 ( vô lí )
Vậy x = 1; x= -2
a) \(2x^3-x^2+3x+6=0\)
\(\left(2x^3-x^2\right)+\left(3x+6\right)=0\)
\(x^2\left(2-x\right)-3\left(2-x\right)=0\)
\(\left(x^2-3\right)\left(2-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2-3=0\\2-x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)\(\)
vậy \(\orbr{\begin{cases}x=\sqrt{3}\\x=2\end{cases}}\)
Ví dụ cho bạn một bài, còn lại tương tự.
a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)
\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)
Vậy phương trình vô nghiệm.
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
a) (5x - 1)(2x + 1) = (5x -1)(x + 3)
<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0
<=> (5x - 1)(2x + 1 - x - 3) = 0
<=> (5x - 1)(x - 2) = 0
<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)
Vậy x = 0,2 ; x = 2 là nghiệm phương trình
b) x3 - 5x2 - 3x + 15 = 0
<=> x2(x - 5) - 3(x - 5) = 0
<=> (x2 - 3)(x - 5) = 0
<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)
<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)
<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)
Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm
c) (x - 3)2 - (5 - 2x)2 = 0
<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0
<=> (-x + 2)(3x - 8) = 0
<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)
d) x3 + 4x2 + 4x = 0
<=> x(x2 + 4x + 4) = 0
<=> x(x + 2)2 = 0
<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)
Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)
Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc
\(a.2\left(x+3\right)-x\left(x+3\right)=0\)
\(\text{⇔}\left(x+3\right)\left(2-x\right)=0\)
\(\text{⇔}x=-3orx=2\)
\(b.x^2\left(2x+3\right)-8x-12=0\)
\(\text{⇔}x^2\left(2x+3\right)-4\left(2x+3\right)=0\)
\(\text{⇔}\left(x-2\right)\left(x+2\right)\left(2x+3\right)=0\)
\(\text{⇔}x=2;x=-2orx=-\dfrac{3}{2}\)
\(c.\left(2x-7\right)^2-\left(x-3\right)^2=0\)
\(\text{⇔}\left(2x-7-x+3\right)\left(2x-7+x-3\right)=0\)
\(\text{⇔}\left(x-4\right)\left(3x-10\right)=0\)
\(\text{⇔}x=4orx=\dfrac{10}{3}\)
\(d.\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\)
\(\text{⇔}\left(5x^2+3x-2-4x^2+3x+2\right)\left(5x^2+3x-2+4x^2-3x-2\right)=0\)
\(\text{⇔}\left(x^2+6x\right)\left(9x^2-4\right)=0\)
\(\text{⇔}x\left(x+6\right)\left(9x^2-4\right)=0\)
\(\text{⇔}x=0;x=-6orx=+-\dfrac{2}{3}\)
Còn lại tượng tự nha , dài quá ~
a) 2(x+3)=x(x+3)
2x+6=x^2+3x
2x-x^2-3x=6
x(2-x-3)=6
x(-1-x)=6 ( xong lập bang nhà)
a) \(x^3-5x^2+8x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)
\(\Leftrightarrow x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(x=\left\{1;2\right\}\)
b: =>2x^3+2x^2-3x^2-3x+6x+6=0
=>(x+1)(2x^2-3x+6)=0
=>x+1=0
=>x=-1
c: =>(x^2+x)^2+(x^2+x)-6=0
=>(x^2+x-2)=0
=>(x+2)(x-1)=0
=>x=1 hoặc x=-2
d: =>(x^2-4x-3)(x^2-4x-5)=0
=>(x-5)(x+1)(x^2-4x-3)=0
hay \(x\in\left\{2+\sqrt{7};2-\sqrt{7};5;-1\right\}\)