\(\sqrt{16x}=8;\)                             b. 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2017

a) \(\sqrt{16x}=8\)

\(\Leftrightarrow\sqrt{16x}^2=8^2\)

\(\Leftrightarrow16x=64\Rightarrow x=\dfrac{64}{16}=4\)

b) \(\sqrt{4x}=\sqrt{5}\)

\(\Leftrightarrow\sqrt{4x}^2=\sqrt{5}^2\)

\(\Rightarrow4x=5\Rightarrow x=\dfrac{5}{4}\)

c) \(\sqrt{9\left(x-1\right)}=21\)

\(\Leftrightarrow\sqrt{9\left(x-1\right)}^2=21^2\)

\(\Leftrightarrow9\left(x-1\right)=441\)

\(\Leftrightarrow x-1=49\rightarrow x=50\)

d) \(\sqrt{4\left(1-x\right)^2}-6=0\)

\(\Leftrightarrow\sqrt{4\left(1-x\right)^2}^2=6^2\)

\(\Leftrightarrow4\left(1-x\right)^2=36\)

\(\Leftrightarrow\left(1-x\right)^2=9\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

31 tháng 3 2017

a) Điều kiện x ≥ 0.

= 8 16x = 64 x = 4.

b) ĐS: x = .

c) ĐS: x = 50.

d) Điều kiện: Vì ≥ 0 với mọi giá trị của x nên có nghĩa với mọi giá trị của x.

- 6 = 0 √4. - 6 = 0

2.│1 - x│= 6 │1 - x│= 3.

Ta có 1 - x ≥ 0 khi x ≤ 1. Do đó:

khi x ≤ 1 thì │1 - x│ = 1 - x.

khi x > 1 thì │1 - x│ = x -1.

Để giải phương trình │1 - x│= 3, ta phải xét hai trường hợp:

- Khi x ≤ 1, ta có: 1 - x = 3 x = -2.

Vì -2 < 1 nên x = -2 là một nghiệm của phương trình.

- Khi x > 1, ta có: x - 1 = 3 x = 4.

Vì 4 > 1 nên x = 4 là một nghiệm của phương trình.

Vậy phương trình có hai nghiệm là x = -2 và x = 4.

NV
25 tháng 5 2019

\(\sqrt{4x^2}=6\Rightarrow\left|2x\right|=6\Rightarrow\left[{}\begin{matrix}2x=6\\2x=-6\end{matrix}\right.\) \(\Rightarrow x=\pm3\)

b/ ĐKXĐ: \(x\ge0\)

\(\sqrt{16x}=8\Leftrightarrow16x=64\Rightarrow x=4\)

c/ ĐKXĐ: \(x\ge1\)

\(\sqrt{9\left(x-1\right)}=21\Leftrightarrow\sqrt{x-1}=7\Leftrightarrow x-1=49\Rightarrow x=50\)

d/ \(\sqrt{4\left(1-x\right)^2}=6\Leftrightarrow2\left|1-x\right|=6\Leftrightarrow\left|1-x\right|=3\Rightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

e/ \(\sqrt{1-4x+4x^2}=5\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

f/ĐKXĐ: \(x\ge-\frac{1}{2}\)

\(\sqrt{9x^2}=2x+1\Leftrightarrow\left|3x\right|=2x+1\Leftrightarrow\left[{}\begin{matrix}3x=2x+1\\-3x=2x+1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{1}{5}\end{matrix}\right.\)

11 tháng 6 2019

\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)

=> \(\sqrt{x^2-25}=\sqrt{x-5}\)

=>\(x^2-25=x-5\)

=>\(x^2-x=25-5=20\)

=>( đến đoạn này mình xin chịu )

11 tháng 6 2019

\(a,\sqrt{16x}=8\)

=>\(16x=8^2\)

=>\(16x=64\)

=>\(x=64:16=4\)

Vậy \(x\in\left\{4\right\}\)

\(b,\sqrt{x^2}=2x-1\)

=>\(x=2x-1\)

=>\(2x-x=1\)

=>\(x=1\)

Vậy \(x\in\left\{1\right\}\)

\(c,\sqrt{9.\left(x-1\right)}=21\)

=>\(9.\left(x-1\right)=21^2=441\)

=> \(x-1=441:9=49\)

=>\(x=49+1=50\)

Vậy \(x\in\left\{50\right\}\)

\(d,\sqrt{4\left(1-x\right)^2}-6=0\)

=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)

=> \(4\left(1-x\right)^2=6^2=36\)

=>\(\left(1-x\right)^2=36:4=9\)

=>\(1-x=\sqrt{9}=3\)

=>\(x=1-3=-2\)

Vậy \(x\in\left\{-2\right\}\)

\(g,\sqrt{9\left(2-3x\right)^2}=6\)

=> \(9.\left(2-3x\right)^2=6^2=36\)

=> \(\left(2-3x\right)^2=36:9=4\)

=> \(2-3x=\sqrt{4}=2\)

=>\(3x=2-2=0\)

=>\(x=0:3=0\)

Vậy \(x\in\left\{0\right\}\)

( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )

13 tháng 6 2018

Mình làm một vài câu thôi nhé, các câu còn lại tương tự.

Giải:

a) ??? Đề thiếu

b) \(\sqrt{-3x+4}=12\)

\(\Leftrightarrow-3x+4=144\)

\(\Leftrightarrow-3x=140\)

\(\Leftrightarrow x=\dfrac{-140}{3}\)

Vậy ...

c), d), g), h), i), p), q), v), a') Tương tự b)

w), x) Mình đã làm ở đây:

Câu hỏi của Ami Yên - Toán lớp 9 | Học trực tuyến

z) \(\sqrt{16\left(x+1\right)^2}-\sqrt{9\left(x+1\right)^2}=4\)

\(\Leftrightarrow4\left(x+1\right)-3\left(x+1\right)=4\)

\(\Leftrightarrow x+1=4\)

\(\Leftrightarrow x=3\)

Vậy ...

b') \(\sqrt{9x+9}+\sqrt{4x+4}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}=\sqrt{x+1}\)

\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-\sqrt{x+1}=0\)

\(\Leftrightarrow4\sqrt{x+1}=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Vậy ...

13 tháng 6 2018

- Câu a có chút thiếu sót, mong thông cảm :)

\(\sqrt{3x-1}\) = 4

NV
2 tháng 4 2020

\(\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{\left(2\sqrt{2}+\sqrt{3}\right)\left(2\sqrt{2}-\sqrt{3}\right)}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{\left(\sqrt{8}-\sqrt{3}\right)\left(\sqrt{8}+\sqrt{3}\right)}\)

\(=\sqrt{3}+1+\sqrt{3}-1+\frac{5\left(2\sqrt{2}+\sqrt{3}\right)}{5}-\frac{5\left(\sqrt{8}-\sqrt{3}\right)}{5}\)

\(=2\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{8}+\sqrt{3}\)

\(=4\sqrt{3}\)

Giải pt:

1/ \(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x=6\Rightarrow x=3\)

2/ \(\Leftrightarrow\sqrt{3}x^2=\sqrt{12}\Leftrightarrow x^2=\sqrt{4}=2\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

3/ \(\Leftrightarrow x-5=9\Rightarrow x=14\)

4/ Đề thiếu

5/ \(\Leftrightarrow\left|x-3\right|=9\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=9\\x-3=-9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-6\end{matrix}\right.\)

NV
2 tháng 4 2020

6/ \(\Leftrightarrow2\left|1-x\right|=6\)

\(\Leftrightarrow\left|1-x\right|=3\Leftrightarrow\left[{}\begin{matrix}1-x=3\\1-x=-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=4\end{matrix}\right.\)

7/ \(\Leftrightarrow9\left(x-1\right)=21^2\)

\(\Leftrightarrow x-1=49\Rightarrow x=50\)

8/ \(\Leftrightarrow x+1=2^3=8\)

\(\Rightarrow x=7\)

9/ \(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\Leftrightarrow\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)

10/ \(\Leftrightarrow\sqrt{2}x=\sqrt{50}\Leftrightarrow x=\sqrt{25}\Rightarrow x=5\)

11/ \(\Leftrightarrow\left|2x-1\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-1=3\\2x-1=-3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

12/ \(\Leftrightarrow3-2x=\left(-2\right)^3=-8\)

\(\Leftrightarrow2x=11\Rightarrow x=\frac{11}{2}\)

28 tháng 11 2019

Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen

help me, pleaseee

Cần gấp lắm ạ!

3 tháng 12 2017

Ta có \(a,\sqrt{9(x-1)}=21 \)

<=> \(3\sqrt{x-1}=21 \)

<=> \(\sqrt{x-1}=7 \)

<=>\(x-1=49\)

<=>x=50

b, \(\sqrt{4(x-1)^2}-6=0 \)

<=>\(2|x-1|-6=0\)

<=>\(|x-1|=3\)

<=>x=4 hoặc x=-2

c,\(\sqrt{(x-5)^2}=8 \)

<=>|x-5|=8

<=>x=-3 hoặc x=13

d,\(\sqrt{(2x-1)^2}=3 \)

<=>|2x-1|=3

=> x=2 hoặc x=-1

e, \(\sqrt{(2x+3)^2}=3 \)

<=>|2x+3|=3

=>x=0 hoặc x=-3

f, \(\sqrt{x^2-4x+4}=2x-3 \)

<=>\(\sqrt{(x-2)^2}=2x-3 \)

<=>|x-2|=2x-3

Với x-2=2x-3

=>x-1=0

<=>x=1

Với 2-x=2x-3

=>x=\(\frac{5}{3}\)

16 tháng 7 2018

bài 1:

a)\(\left(3-\sqrt{2}\right)\sqrt{7+4\sqrt{3}}\)

\(=\left(3-\sqrt{2}\right)\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=\left(3-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)\(do2>\sqrt{3}\)

\(=6+3\sqrt{3}-2\sqrt{2}-\sqrt{6}\)

b) \(\left(\sqrt{3}+\sqrt{5}\right)\sqrt{7-2\sqrt{10}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{2}\right)do\sqrt{5}>\sqrt{2}\)

\(=\sqrt{15}-\sqrt{6}+5-\sqrt{10}\)

c)\(\left(2+\sqrt{5}\right)\sqrt{9-4\sqrt{5}}\)

\(=\left(2+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-2\right)^2}\)

\(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)do\sqrt{5}>2\)

\(=5-4\)

\(=1\left(hđt.3\right)\)

d)\(\left(\sqrt{6}+\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{8-2\sqrt{15}}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)do\sqrt{5}>\sqrt{3}\)

\(=5-3\)

\(=2\)

e)\(\sqrt{2}\left(\sqrt{8}-\sqrt{32}+3\sqrt{18}\right)\)

\(=\sqrt{2}\left(2\sqrt{2}-4\sqrt{2}+9\sqrt{2}\right)\)

\(=2\left(2-4+9\right)\)

\(=2.7=14\)

f)\(\sqrt{2}\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\)

\(=2-\sqrt{6-2\sqrt{5}}\)

\(=2-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=2-\left(\sqrt{5}-1\right)\)

\(=2-\sqrt{5}+1\)

\(=3-\sqrt{5}\)

g)\(\sqrt{3}-\sqrt{2}\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)

\(=\sqrt{3}-\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)\)

\(=\sqrt{3}-\sqrt{6}-2\)

h) \(\left(\sqrt{2}-\sqrt{3+\sqrt{5}}\right)\sqrt{2}+2\sqrt{5}\)

\(=\left(2-\sqrt{6+2\sqrt{5}}\right)+2\sqrt{5}\)

\(=\left(2-\sqrt{\left(\sqrt{5}+1\right)^2}\right)+2\sqrt{5}\)

\(=2-\left(\sqrt{5}+1\right)+2\sqrt{5}\left(do\sqrt{5}>1\right)\)

\(=2-\sqrt{5}-1+2\sqrt{5}\)

\(=1-\sqrt{5}\)

bài 2)

a) \(\sqrt{4x^2-4x+1}=5\)

\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)

\(\Leftrightarrow2x-1=5\)hoặc \(\Leftrightarrow2x-1=-5\)

\(\Leftrightarrow x=3\)hoặc \(\Leftrightarrow x=-2\)

Vậy x = 3 hoặc x = -2

13 tháng 8 2019

TL:

\(a,\sqrt{\left(\sqrt{3}-x\right)^2}=\sqrt{3}-x\)

BT thỏa mãn \(\forall x\)

14 tháng 8 2019

a) \(\sqrt{\left(\sqrt{3}-x\right)^2}=\left|\sqrt{3}-x\right|\)

Vậy biểu thức có nghĩa với mọi x

b) \(\sqrt{\frac{-3}{2+x}}\)

Biểu thức có nghĩa\(\Leftrightarrow2+x< 0\Leftrightarrow x< -2\)