Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gần giống cho nó giống luôn.
cần thêm (-x^3+2x^2-x) là giống
\(\left(x-1\right)^4+x^3-2x^2+x=\left(x-1\right)^4+x\left(x^2-2x+1\right)=\left(x-1\right)^4+x\left(x-1\right)^2\)
\(\left(x-1\right)^2\left[\left(x-1\right)^2+x\right]\)
\(\left[\begin{matrix}x-1=0\Rightarrow x=0\\\left(x-1\right)^2+x=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\end{matrix}\right.\)
Nghiệm duy nhất: x=1
A) x3-6x2+12x-8=0
<=>(x-2)3=0
<=>x-2=0
<=>x=2
B)4(x-3)2 -(2x-1)(2x+1)=13
<=>4(x2-6x+9)-4x2+1=13
<=>4x2-24x+36-4x2+1=13
<=>-24x+37=13
<=>24x=37-13
<=>24x=24
<=>x=1
C)25x2-6(x+1)2=0
<=>(5x-\(\sqrt{6}\left(x+1\right)\))(5x+\(\sqrt{6}\left(x+1\right)\))=0
<=>5x-\(\sqrt{6}\left(x+1\right)\)=0 hoặc 5x+\(\sqrt{6}\left(x+1\right)\))=0
<=>5x-\(\sqrt{6}x-\sqrt{6}\)=0 <=>5x+\(\sqrt{6}x+\sqrt{6}\)=0
<=>x(5-\(\sqrt{6}\))=\(\sqrt{6}\) <=>x(5+\(\sqrt{6}\))=\(-\sqrt{6}\)
<=>x=\(\frac{\sqrt{6}}{5-\sqrt{6}}\) <=>x=\(\frac{-\sqrt{6}}{5+\sqrt{6}}\)
Rút gọn C=(4+2A+A^2).(4-A^2).(4-2a+a^2) GIẢI GIÚP MIK ĐI
b. sửa đề
\(6x^4+25x^3+12x-25x^2+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow6x^3\left(x+2\right)+13x^2\left(x+2\right)-14x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(2x-1\right)\left(3x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=-3\\x=\dfrac{1}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
Vậy........
Bài 1 : Giải phương trình
a) (x + 3)4 + (x + 5)4 = 16
Đặt : x + 3 = t
=> x + 5 = x + 3 + 2 = t + 2
Thay x + 3 = t và x + 5 = t + 2 vào phương trình, ta có :
t4 + (t + 2)4 = 16
<=> 2t4 + 8t3 + 24t2 + 32t + 16 = 16
<=> 2(t4 + 4t3 + 12t2 + 16t) = 0
<=> t4 + 4t3 + 12t2 + 16t = 0
<=> (t + 2) . t . (t2 + 2y + 4) = 0
TH1 : t = 0
TH2 : t + 2 = 0 <=> t = -2
TH3 : t2 + 2y + 4 = 0 (vô nghiệm => loại)
Nên t = 0 hoặc t = -2
hay x + 3 = -2 hoặc x + 3 = 0
<=> x = -5 hoặc x = -3
\(S=\left\{-5;-3\right\}\)
b) 6x4 + 25x3 + 12x2 - 25x + 6 = 0
<=> 6x4 + 12x3 + 13x3 + 26x2 - 14x2 - 28x + 3x + 6 = 0
<=> 6x3 (x + 2) + 13x2 (x + 2) - 14x (x + 2) + 3(x + 2) = 0
<=> (x + 2)(6x3 + 13x2 - 14x + 3) = 0
<=> (x + 2)(6x3 + 18x2 - 5x2 - 15x + x + 3) = 0
\(\Leftrightarrow\left(x+2\right)[6x^2\left(x+3\right)-5x\left(x+3\right)+\left(x+3\right)]=0\)
<=> (x + 2)(x + 3) (6x2 - 5x + 1) = 0
<=> (x + 2)(x + 3)(2x - 1)(3x - 1) = 0
TH1 : x + 2 = 0 <=> x = -2
TH2 : x + 3 = 0 <=> x = -3
TH3 : 2x - 1 = 0 <=> 2x = 1 <=> x = \(\dfrac{1}{2}\)
TH4 : 3x - 1 = 0 <=> 3x = 1 <=> 3x = \(\dfrac{1}{3}\)
\(S=\left\{-2;-3;\dfrac{1}{2};\dfrac{1}{3}\right\}\)
\(2x\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)
\(2x\left(3x-5\right)+\left(3x-5\right)=0\)
\(\left(2x+1\right)\left(3x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)
\(9\left(3x-2\right)-x\left(2-3x\right)=0\)
\(9\left(3x-2\right)+x\left(3x-2\right)=0\)
\(\left(9+x\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)
\(\left(2x-1\right)^2=25\)
\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)
c/ Ta có: (x2 + 5x + 4).(9x2 + 30x + 16) = 4x2
=> (x + 1).(x + 4).(3x + 2).(3x + 8) = 4x2
=> (x + 1).(3x + 8).(x + 4).(3x + 2) = 4x2
=> (3x2 + 11x + 8).(3x2 + 14x + 8) = 4x2
=> (3x2 + \(\frac{25}{2}\)x + 8 - \(\frac{3}{2}\)x) . (3x2 + \(\frac{25}{2}\)x + 8 + \(\frac{3}{2}\)x) = 4x2
=> (3x2 + \(\frac{25}{2}\)x + 8)2 - \(\frac{9}{4}\)x2 = 4x2
=> (3x2 + \(\frac{25}{2}\)x + 8)2 = \(\frac{25}{4}\)x2
=> 3x2 + \(\frac{25}{2}\)x + 8 = \(\frac{5}{2}\)x hoặc 3x2 + \(\frac{25}{2}\)x + 8 = \(-\frac{5}{2}\)x
+) Với \(3x^2+\frac{25}{2}x+8=\frac{5}{2}x\Rightarrow3x^2+10x+8=0\) . Tới đây bạn tự giải
+) Với \(3x^2+\frac{25}{2}x+8=-\frac{5}{2}x\Rightarrow3x^2+15x+8=0\). Tới đây bạn tự giải
d/ (x2 + x + 1)2 = 3(x4 + x2 + 1) => (x2 + x + 1).(x2 + x + 1) = 3.(x4 + x2 + 1)
Chia 2 vế cho x2 ta được: \(\left(x+\frac{1}{x}+1\right).\left(x+\frac{1}{x}+1\right)=3.\left(x^2+\frac{1}{x^2}+1\right)\)
Đặt \(a=x+\frac{1}{x}\). Có: \(\left|a\right|=\left|x+\frac{1}{x}\right|=\left|x\right|+\frac{1}{\left|x\right|}\ge2\Rightarrow\left|a\right|\ge2\). Mặt khác: \(x^2+\frac{1}{x^2}=a^2-2\)
Ta có pt: (a + 1).(a + 1) = 3.(a2 - 2 + 1) => a2 + 2a + 1 = 3a2 - 3 => 2a2 - 2a - 4 = 0 => a = 2 (nhận) hoặc a = -1(loại)
+) Với a = 2 \(\Rightarrow x+\frac{1}{x}=2\). Tới đây bạn tự giải
e/ 6x4 + 25x3 + 12x2 - 25x + 6 = 0
Vì x = 0 k là nghiệm của pt nên pt đã cho \(\Leftrightarrow6.\left(x^2+\frac{1}{x^2}\right)+25.\left(x-\frac{1}{x}\right)+12=0\)
Đặt \(a=x-\frac{1}{x}\Rightarrow x^2+\frac{1}{x^2}=a^2+2\). Ta có phương trình: 6(a2 + 2) + 25a + 12 = 0
=> 6a2 + 12 + 25a + 12 = 0 => 6a2 + 25a + 24 = 0 => a = -3/2 hoặc a = -8/3
+) Với a = -3/2 \(\Rightarrow x-\frac{1}{x}=-\frac{3}{2}\) .Tới đây bạn tự giải
+) Với a = -8/3 \(\Rightarrow x-\frac{1}{x}=-\frac{8}{3}\). Tới đây bạn tự giải
a: \(6x^4+25x^3+12x^2-25x+6=0\)
\(\Leftrightarrow6x^4+12x^3+13x^3+26x^2-14x^2-28x+3x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+13x^2-14x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(6x^3+18x^2-5x^2-15x+x+3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(6x^2-5x+1\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)\left(3x-1\right)\left(2x-1\right)=0\)
hay \(x\in\left\{-2;-3;\dfrac{1}{3};\dfrac{1}{2}\right\}\)
b: \(x^5+2x^4+3x^3+3x^2+2x+1=0\)
\(\Leftrightarrow x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^3+2x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4+x^2+x^3+x+x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x^2+1\right)=0\)
=>x+1=0
hay x=-1
c: \(x^2\left(x^2+2\right)-x^2-2=0\)
\(\Leftrightarrow\left(x^2+2\right)\left(x^2-1\right)=0\)
=>x=1 hoặc x=-1