Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2x}{3}=\frac{3y}{4}\Leftrightarrow8x=9y\Rightarrow x=\frac{9y}{8}\left(1\right)\)
\(\frac{3y}{4}=\frac{4z}{5}\Leftrightarrow15y=16z\Rightarrow z=\frac{15y}{16}\left(2\right)\)
THay (1) và (2) vào biểu thức \(x+y+z=41\);ta được : \(\frac{9y}{8}+y+\frac{15y}{16}=41\)
\(\Rightarrow18y+16y+15y=656\Rightarrow y=\frac{656}{49}\)
Do đó : \(x=\frac{\frac{9.656}{49}}{8}=\frac{738}{49}\)
\(z=\frac{\frac{15.656}{49}}{16}=\frac{615}{49}\)
KL : \(x=\frac{738}{49};y=\frac{656}{49};z=\frac{615}{49}\)
b) Ta có : \(4x=3y\Rightarrow x=\frac{3y}{4}\)(1)
\(5y=6z\Rightarrow z=\frac{5y}{6}\)(2)
Thay (1) và (2) vào biểu thức \(x^2+y^2+z^2=500\);ta được :
\(\left(\frac{3y}{4}\right)^2+y^2+\left(\frac{5y}{6}\right)^2=500\)
\(\Rightarrow\frac{9y^2}{16}+y^2+\frac{25y^2}{36}=500\Rightarrow324y^2+576y^2+400y^2=288000\)
\(\Rightarrow1300y^2=288000\Rightarrow y^2=\frac{2880}{13}\Rightarrow\orbr{\begin{cases}y=\frac{24\sqrt{65}}{13}\\y=-\frac{24\sqrt{65}}{13}\end{cases}}\)
Với \(y=\frac{24\sqrt{65}}{13}\Rightarrow x=\frac{3\cdot\frac{24\sqrt{65}}{13}}{4}=\frac{18\sqrt{65}}{13};z=\frac{5\cdot\frac{24\sqrt{65}}{13}}{6}\)
\(y=-\frac{24\sqrt{65}}{13}\Rightarrow x=-\frac{18\sqrt{65}}{13};z=\frac{5\cdot-\frac{24\sqrt{65}}{13}}{6}\)
a)2x=3y 5y=7z
=>\(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\) =>\(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}\)\(=\frac{30}{-15}=-2\)
\(\frac{x}{21}=-2=>x=-2.21=-42\)
\(\frac{y}{14}=-2=>y=-2.14=-28\)
\(\frac{z}{10}=-2=>z=-2.10=-20\)
a) Ta có : \(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)
=>\(\dfrac{2x}{6}\)=\(\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{2x}{6}\)=\(\dfrac{y}{7}\)=\(\dfrac{2x-y}{6-7}\)=\(\dfrac{-12}{-1}\)=12
Suy ra : + \(\dfrac{x}{3}\)=12 => x=3.12=36
+\(\dfrac{y}{7}\)=12 => y=7.12=84
b) Ta có: 3x=5y
=>\(\dfrac{x}{5}\)=\(\dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{5}\)=\(\dfrac{y}{3}\)=\(\dfrac{x.y}{5.3}\)=\(\dfrac{60}{15}\)=4
Suy ra : +\(\dfrac{x}{5}\)=4 => x=5.4=20
+\(\dfrac{y}{3}\) =4 => x=3.4=15
c) Ta có : 4x=5y
=> \(\dfrac{x}{5}\)=\(\dfrac{y}{4}\)=\(\dfrac{x^2}{5^2}\)=\(\dfrac{y^2}{4^2}\)=\(\dfrac{x^2}{25}\)=\(\dfrac{y^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x^2}{25}\) =\(\dfrac{y^2}{16}\)=\(\dfrac{x^2-y^2}{25-16}\)=\(\dfrac{9}{9}\)=1
Suy ra : .... (tương tự mấy câu trên)
d)Ta có :\(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)=\(\dfrac{x.y}{3.7}\)=\(\dfrac{21}{21}\)=1
Suy ra: ....(tương tự mấy câu trên)
e) Ta có ; 2x=9y
=>\(\dfrac{x}{9}\)=\(\dfrac{y}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}\)=\(\dfrac{y}{2}\)=\(\dfrac{x.y}{9.2}\)=\(\dfrac{72}{18}\)=4
Suy ra :....(tương tự mấy câu trên)
- Tick hộ mk cái mất công cả giờ bấm máy tính.
a, x : 3 = y : 7 và 2x - y = -12
Theo tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{3}\)=\(\dfrac{y}{7}\)=\(\dfrac{2x}{6}\)=\(\dfrac{2x-y}{6-7}\)=\(\dfrac{-12}{-1}\)=12
=> x = 12 : 3 = 4
y = 12 : 7 = \(\dfrac{12}{7}\)
1) ADTCDTSBN, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)= \(\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}\)= 4
* \(\frac{x}{3}=4\)=> x = 3 . 4 = 12
- \(\frac{y}{4}=4\)=> y = 4 . 4 = 16
* \(\frac{z}{5}=4\)=> z = 5 . 4 = 20
Vậy x = 12
y = 16
z = 20
\(4x=3y\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{400}{25}=16\)
suy ra:
\(\frac{x^2}{9}=16\Rightarrow x^2=144\Rightarrow x=12\)hoặc \(x=-12\)
\(\frac{y^2}{16}=16\Rightarrow y^2=256\Rightarrow y=16\)hoặc \(y=-16\)
Câu còn lại tương tự
a: Ta có: 3x=5y
nên x/5=y/3
Đặt x/5=y/3=k
=>x=5k; y=3k
Ta có: xy=54
\(\Leftrightarrow15k^2=54\)
\(\Leftrightarrow k^2=3.6\)
Trường hợp 1: \(k=\dfrac{3\sqrt{10}}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=\dfrac{15\sqrt{10}}{5}=3\sqrt{10}\\y=3k=\dfrac{9\sqrt{10}}{5}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{3\sqrt{10}}{5}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=\dfrac{-15\sqrt{10}}{5}=-3\sqrt{10}\\y=3k=\dfrac{-9\sqrt{10}}{5}\end{matrix}\right.\)
b: 2x=3y
nên x/3=y/2
Đặt x/3=y/2=k
=>x=3k; y=2k
\(2x^3+y^3=62\)
\(\Leftrightarrow2\cdot27k^3+8k^3=62\)
=>k=1
=>x=3; y=2