K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2019

a) 3x\(^2\)+8x+4=0

\(\Leftrightarrow3x^2+6x+2x+4=0\)

⇔ x( 3x + 2 ) + 2 ( 3x + 2 ) = 0

⇔ ( x + 2 ) ( 3x + 2 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\frac{-2}{3}\end{matrix}\right.\)

b) 4x\(^2\)-4x-3=0

\(\Leftrightarrow4x^2-6x+2x-3=0\)

⇔ 2x( 2x + 1 ) - 3( 2x + 1 ) = 0

⇔ ( 2x - 3 ) ( 2x + 1 ) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3}{2}\\x=\frac{-1}{2}\end{matrix}\right.\)

4 tháng 8 2018

\(4x^2+4x-3=0\)

\(\left[\left(2x\right)^2+2.2x.1+1\right]-4=0\)

\(\left(2x+1\right)^2-2^2=0\)

\(\left(2x+1-2\right).\left(2x+1+2\right)=0\) 

\(\left(2x-1\right).\left(2x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x-1=0\\2x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=\frac{1}{2}\\x=-\frac{3}{2}\end{cases}}\)

\(x^4-3x^3-x+3=0\)

\(x^3.\left(x-3\right)-\left(x-3\right)=0\)

\(\left(x-3\right).\left(x^3-1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^3-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}}\)

Vậy \(\orbr{\begin{cases}x=3\\x=1\end{cases}}\)

\(x^2.\left(x-1\right)-4x^2+8x-4=0\)

\(x^2.\left(x-1\right)-\left[\left(2x\right)^2-2.2x.2+2^2\right]=0\)

\(x^2.\left(x-1\right)-\left(2x-2\right)^2=0\)

\(x^2.\left(x-1\right)-4.\left(x-1\right)^2=0\)

\(\left(x-1\right).\left[x^2-4.\left(x-1\right)\right]=0\)

\(\left(x-1\right).\left[x^2-2.x.2+2^2\right]=0\)

\(\left(x-1\right).\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

Vậy \(\begin{cases}x=1\\x=2\end{cases}\)

Tham khảo nhé~

1 tháng 8 2019

a) 3x2 + 8x + 4 = 0

=> 3x2 + 6x + 2x +  4 = 0

=> 3x(x + 2) + 2(x + 2) = 0

=> (3x + 2)(x + 2) = 0

=> \(\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{2}{3}\\x=-1\end{cases}}\)

b) 4x2 - 4x - 3 = 0

=> 4x2 - 6x + 2x - 3 = 0

=> 2x(2x - 3) + (2x - 3) = 0

=> (2x + 1)(2x - 3) = 0

=> \(\orbr{\begin{cases}2x+1=0\\2x-3=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{3}{2}\end{cases}}\)

1 tháng 8 2019

\(a,3x^2+8x+4=0\) 

\(\Rightarrow3x^2+6x+2x+4=0\) 

\(\Rightarrow3x\left(x+2\right)+2\left(x+2\right)=0\) 

\(\Rightarrow\left(3x+2\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x+2=0\\x+2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{3}\\x=-2\end{cases}}}\)

Vậy....

9 tháng 2 2019

hướng dẫn cách làm-tự làm tiếp nha :)

a) đặt \(k=x^2-4x\), ta có:\(k^2-2k=15\)\(\Rightarrow k^2-2x+1=16\Rightarrow\left(k-1\right)^2=4^2=\left(-4\right)^2\)

b) đặt \(A=x^2-3x\), ta có: \(A^2-2A-8=0\Rightarrow A^2-2A+1=9\Rightarrow\left(A-1\right)^2=3^2=\left(-3\right)^2\)

c)theo đề \(\Leftrightarrow\orbr{\begin{cases}x^2-4x+3=0\\x^2-8x+9=0\end{cases}}\)

\(x^2-4x+3=0\Leftrightarrow x^2-4x+4=1\Leftrightarrow\left(x-2\right)^2=1^2=\left(-1\right)^2\)

\(x^2-8x+9=0\Leftrightarrow x^2-8x+16=7\Leftrightarrow\left(x-4\right)^2=\pm\sqrt{7}^2\)

9 tháng 2 2019

vt ko chi tiết bn ib là đc rùi, sai tớ làm gì T.T 

mà tớ làm mẫu 1 bài thui nha, bài còn lại có cách làm òi. bn tự dựa vô nha

\(\text{Đặt }k=x^2-4x,\text{ta có:}\)

\(\left(x^2-4x\right)^2-2.\left(x^2-4x\right)=15\)

\(\Leftrightarrow k^2-2k=0\)

\(\Leftrightarrow k^2-2k+1=16\)

\(\Leftrightarrow\left(k-1\right)^2=16\)

\(\Leftrightarrow\orbr{\begin{cases}k-1=4\\k-1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}k=5\\k=-3\end{cases}}}\)

\(\text{Với }k=5,\text{Ta có: }x^2-4x=5\Rightarrow x^2-4x-5=0\Rightarrow x^2-5x+x-5=0\)

\(\Rightarrow x.\left(x-5\right)+\left(x-5\right)=0\Rightarrow\left(x+1\right).\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=5\end{cases}}\)

\(\text{Với }k=-3,\text{ta có: }x^2-4x=-3\Rightarrow x^2-4x+3=0\Rightarrow k^2-3x-x+3=0\)

\(\Rightarrow x.\left(x-3\right)-\left(x-3\right)=0\Rightarrow\left(x-1\right).\left(x-3\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Vậy...

21 tháng 7 2016

giải mệt cả người mà có ai biết ơn đâu

2 tháng 8 2018

\(a,3x\left(x-4\right)-2x+8=0\)

\(\Rightarrow3x\left(x-4\right)-2\left(x-4\right)=0\)

\(\Rightarrow\left(3x-2\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3x-2=0\\x-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{3}\\4\end{cases}}}\)

Vậy \(x=\frac{2}{3}\)hoặc \(x=4\)

\(b,\left(3x-1\right)^2-\left(3x+2\right)\left(3x+1\right)=2\)

\(\Rightarrow9x^2-6x+1-\left(9x^2+3x+6x+1\right)-2=0\)

\(\Rightarrow9x^2-6x+1-9x^2-3x-6x-1-2=0\)

\(\Rightarrow-15x-2=0\)

\(\Rightarrow-15x=2\)

\(\Rightarrow x=\frac{-2}{15}\)

30 tháng 5 2017

\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

30 tháng 5 2017

xin lỗi toán lớp 8 thì mk chịu

24 tháng 9 2020

a) ( 5 - 2x )( 2x + 7 ) - 4x2 + 25 = 0

<=> ( 5 - 2x )( 2x + 7 ) + ( 5 - 2x )( 5 + 2x ) = 0

<=> ( 5 - 2x )( 2x + 7 + 5 + 2x ) = 0

<=> ( 5 - 2x )( 4x + 12 ) = 0

<=> \(\orbr{\begin{cases}5-2x=0\\4x+12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

b) ( 5x2 + 3x - 2 )2 - ( 4x2 - x - 5 )2 = 0 ( như này chứ nhỉ ? )

<=> [ ( 5x2 + 3x - 2 ) - ( 4x2 - x - 5 ) ][ ( 5x2 + 3x - 2 ) + ( 4x2 - x - 5 ) ] = 0

<=> ( 5x2 + 3x - 2 - 4x2 + x + 5 )( 5x2 + 3x - 2 + 4x2 - x - 5 ) = 0

<=> ( x2 + 4x + 3 )( 9x2 + 2x - 7 ) = 0

<=> ( x2 + x + 3x + 3 )( 9x2 + 9x - 7x - 7 ) = 0

<=> [ x( x + 1 ) + 3( x + 1 ) ][ 9x( x + 1 ) - 7( x + 1 ) ] = 0

<=> ( x + 1 )( x + 3 )( x + 1 )( 9x - 7 ) = 0

<=> ( x + 1 )2( x + 3 )( 9x - 7 ) = 0

<=> x + 1 = 0 hoặc x + 3 = 0 hoặc 9x - 7 = 0

<=> x = -1 hoặc x = -3 hoặc x = 7/9

c) 15x4 - 8x3 - 14x2 - 8x + 15 = 0

<=> 15x4 + 22x3 - 30x3 + 15x2 + 15x2 - 44x2 - 30x + 22x + 15 = 0

<=> ( 15x4 + 22x3 + 15x2 ) - ( 30x3 + 44x2 + 30x ) + ( 15x2 + 22x + 15 ) = 0

<=> x2( 15x2 + 22x + 15 ) - 2x( 15x2 + 22x + 15 ) + ( 15x2 + 22x + 15 ) = 0

<=> ( 15x2 + 22x + 15 )( x2 - 2x + 1 ) = 0

<=> ( 15x2 + 22x + 15 )( x - 1 )2 = 0

<=> \(\orbr{\begin{cases}15x^2+22x+15=0\\\left(x-1\right)^2=0\end{cases}}\)

+) ( x - 1 )2 = 0 <=> x = 1

+) 15x2 + 22x + 15 = 15( x2 + 22/15x + 121/225 ) + 104/15 = 15( x + 11/25 )2 + 104/15 ≥ 104/15 > 0 ∀ x

Vậy phương trình có nghiệm duy nhất là x = 1

24 tháng 9 2020

Cảm ơn bạn câu b thiếu cái mũ 2 sorry :))

5 tháng 8 2018

a) \(3x\left(x-2\right)-4x+8=0\)

\(\Leftrightarrow3x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(3x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\3x-4=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{4}{3}\end{cases}}\)

b) \(3\left(2x-1\right)^2+2-4x=0\)

\(\Leftrightarrow3\left(2x-1\right)^2-2\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(6x-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-1=0\\6x-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{5}{6}\end{cases}}\)