Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a)
\(\left(x+2\right)^2-9=0\)
\(\Rightarrow\left(x+2\right)^2=9=3^2\)
\(\Rightarrow x+2=\pm3\)
\(\Rightarrow x=-5;1\)
b)
\(25x^2-10x+1=0\)
\(\left(5x\right)^2-2\cdot5x+1^2=0\)
\(\Rightarrow\left(5x+1\right)^2=0\)
\(\Rightarrow5x+1=0\)
\(\Rightarrow5x=-1;x=\dfrac{-1}{5}\)
c)
\(x^2+14x+49=0\)
\(\Rightarrow x^2+2\cdot7x+7^2=0\)
\(\Rightarrow\left(x+7\right)^2=0;x+7=0\)
\(\Rightarrow x=-7\)
d)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(4x^2-4x+1+x^2+6x+9-5x^2+5\cdot49=0\)
\(\Rightarrow5x^2-5x^2-4x+6x+10+245=0\)
\(\Rightarrow2x+255=0\)
\(\Rightarrow2x=-255\)
\(\Rightarrow x=\dfrac{-255}{2}\)
a. x(x-2)+x-2=0
=> (x-2).(x+1)=0
=> x-2=0 hoặc x+1=0
=> x=2 hoặc x=-1
b. 5x(x-3)-x+3=0
=> 5x(x-3)-(x-3)=0
=> (x-3).(5x-1)=0
=> x-3=0 hoặc 5x-1=0
=> x=3 hoặc x=1/5
a) \(\Leftrightarrow36+3-11x=0\)
\(\Leftrightarrow-11x=-39\)
\(\Leftrightarrow x=\frac{39}{11}\)
b) \(x^2-2x\frac{1}{4}+\frac{1}{16}-\frac{81}{16}=0\)
\(\left(x-\frac{1}{4}\right)^2=\frac{81}{16}\)
\(x-\frac{1}{4}=\frac{9}{4}\)
\(x=\frac{10}{4}=\frac{5}{2}\)
c) \(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x^2-4\right)\left(x-3\right)=0\)
\(\left(x-2\right)\left(x+2\right)\left(x-3\right)=0\)
x = 2 hoặc x = - 2 hoặc x = 3
a) \(\frac{8}{2}\)
b) \(\frac{5}{2}\)
c) x=2 hoạc x=-2 hoặc x=3
\(a,x^2-2x+1=0\)
\(\left(x-1\right)^2=0\)
\(x-1=0\)
\(x=1\)
\(b,\left(x-3\right)\left(x+7\right)=0\)
\(\hept{\begin{cases}x-3=0\\x+7=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\x=-7\end{cases}}}\)
\(c,x^4-4x^2=0\)
\(x^2\left(x^2-4\right)=0\)
\(x^2\left(x+2\right)\left(x-2\right)=0\)
\(\hept{\begin{cases}x^2=0\\x+2=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-2\\x=2\end{cases}}}\)
=.= hok tốt !!
a) x2-2x+1=0
(=) (x-1)2=0
(=) x=1
b (x-3)(x+7) =0
\(\left(=\right)\orbr{\begin{cases}x-3=0\\x+7=0\end{cases}}\left(=\right)\orbr{\begin{cases}x=3\\x=-7\end{cases}}\)
c) (=) x2(x2-4) =0
\(\left(=\right)\orbr{\begin{cases}x^2=0\\x^2-4=0\end{cases}}\left(=\right)\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
a/ => x(x2 - 9) = 0
=> x(x - 3)(x + 3) = 0
=> x = 0
hoặc x - 3 = 0 => x = 3
hoặc x + 3 = 0 => x = -3
Vậy x = 0 ; x = 3 ;x = -3
b/ => x2 - 6x + x - 6 = 0
=> x(x - 6) + (x - 6) = 0
=> (x + 1)(x - 6) = 0
=> x + 1 = 0 => x = -1
hoặc x - 6 = 0 => x = 6
Vậy x = -1 ; x = 6
a)
x(x^2-9)=0
x(x^2-3^2)=0
x(x-3)(x+3)
b) x^2-6x+x-6=0
x(x-6)+(x-6)=0
(x-6)(x+1)=0
a) x(x - 2) + x - 2 = 0
(x - 2)(x + 1) = 0
Hoặc x - 2 = 0 => x = 2
Hoặc x + 1 = 0 => x = -1
Vậy x = -1; x = 2.
b) 5x(x - 3) - x + 3 = 0
5x(x - 3) - (x - 3) = 0
(x - 3)(5x - 1) = 0
Hoặc x - 3 = 0 => x = 3
Hoặc 5x - 1 = 0 => x = 1/5.
Vậy x = 1/5; x = 3.
\(A=x^2-2x+10\)
\(A=\left(x^2-2x+1\right)+9\)
\(A=\left(x-1\right)^2+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(\Rightarrow A\ge9\)
Dấu "=" xảy ra khi :
\(x-1=0\Leftrightarrow x=1\)
Vậy Min A = 9 khi x = 1
\(B=x^2-5x-7\)
\(B=\left(x^2-5x+\frac{25}{4}\right)-\frac{53}{4}\)
\(B=\left(x-\frac{5}{2}\right)^2-\frac{53}{4}\)
Mà \(\left(x-\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow B\ge-\frac{53}{4}\)
Dấu "=" xảy ra khi :
\(x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy \(B_{Min}=-\frac{53}{4}\Leftrightarrow x=\frac{5}{2}\)
a) 3x^3-12x=0
3x(x^2-4)=0
3x(x-2)(x+2)=0
suy ra 3x=0 suy ra x=0
x-2=0 x=2
x+2=0 x= -2
b) (x-3)^2-(x-3)(3-x)^2=0
(x-3)^2-(x-3)(x-3)^2=0
(x-3)^2(1-x+3)=0
(x-3)^2(4-x)=0
suy ra x-3=0 suy ra x=3
4-x=0 x=4
a) và b) đã nhé bạn
\(x^2+3x=0\)
\(\Leftrightarrow x\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
\(x^2+3x=0\)
\(x\left(x+3\right)=0\)
x = 0 hoặc x +3 = 0
=> x = 0 hoặc x = -3
Vậy ...