K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2020

Câu 1 :

a, Ta có : \(x^2-10x=-25\)

=> \(x^2-10x+25=0\)

=> \(\left(x-5\right)^2=0\)

=> \(x-5=0\)

=> \(x=5\)

Vậy phương trình có nghiệm là x = 5 .

b, Ta có : \(5x\left(x-1\right)=x-1\)

=> \(5x\left(x-1\right)-x+1=0\)

=> \(5x\left(x-1\right)-\left(x-1\right)=0\)

=> \(\left(5x-1\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 1, x = \(\frac{1}{5}.\)

c, Ta có : \(2\left(x+5\right)-x^2-5x=0\)

=> \(2\left(x+5\right)-x\left(x+5\right)=0\)

=> \(\left(2-x\right)\left(x+5\right)=0\)

=> \(\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 2, x = -5 .

d, Ta có : \(x^2-2x-3=0\)

=> \(x^2-3x+x-3=0\)

=> \(x\left(x+1\right)-3\left(x+1\right)=0\)

=> \(\left(x-3\right)\left(x+1\right)=0\)

=> \(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = 3, x = -1 .

e, Ta có : \(2x^2+5x-3=0\)

=> \(2x^2+6x-x-3=0\)

=> \(x\left(2x-1\right)+3\left(2x-1\right)=0\)

=> \(\left(x+3\right)\left(2x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+3=0\\2x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-3\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy phương trình có nghiệm là x = -3, x = \(\frac{1}{2}.\)

14 tháng 2 2020

\(1.x^2-10x=-25\\ \Leftrightarrow x^2-10x+25=0\\\Leftrightarrow \left(x-5\right)^2=0\\\Leftrightarrow x-5=0\\ \Leftrightarrow x=5\)

Vậy nghiệm của phương trình trên là \(5\)

\(2.5x\left(x-1\right)=x-1\\ \Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\\\Leftrightarrow \left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=1\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;\frac{1}{5}\right\}\)

22 tháng 8 2018

1)   bạn ktra lại đề

2)  \(x^6+2x^5+x^4-2x^3-2x^2+1=\left(x^3+x^2-1\right)^2\)

3) 

a)  \(x^2+x-2=0\)

<=>  \(\left(x-1\right)\left(x+2\right)=0\)

<=>  \(\orbr{\begin{cases}x-1=0\\x+2=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=1\\x=-2\end{cases}}\)

Vậy...

b)  \(3x^2+5x-8=0\)

<=>  \(\left(x-1\right)\left(3x+8\right)=0\)

<=>  \(\orbr{\begin{cases}x=1\\x=-\frac{8}{3}\end{cases}}\)

Vậy...

22 tháng 8 2018

2) \(x^6+2x^5+x^4-2x^3-2x^2+1\)

\(=\left(x^6+2x^5+x^4\right)-\left(2x^3+2x^2\right)+1\)

\(=\left(x^3+x^2\right)^2-2\left(x^3+x^2\right)+1\)

\(=\left(x^3+x^2-1\right)^2\)

13 tháng 6 2019

a) \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)-3=-3\)

\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3-3=-3\)

\(\Leftrightarrow14x=0\)

\(\Leftrightarrow x=0\)

Vậy pt có nghiệm duy nhất x = 0.

b) \(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\left(x+2\right)-\left(x-5\right)\)

\(\Leftrightarrow6x^2+19x-7-6x^2-x+5=7\)

\(\Leftrightarrow18x-2=7\)

\(\Leftrightarrow18x=9\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy pt có nghiệm duy nhất \(x=\frac{1}{2}\)

c) \(\left(6x-2\right)^2+\left(5x-2\right)^2-4\left(3x-1\right)\left(5x-2\right)=0\)

\(\Leftrightarrow36x^2-24x+4+25x^2-20x+4-60x^2+33x-8=0\)

\(\Leftrightarrow x^2-11x=0\)

\(\Leftrightarrow x\left(x-11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=11\end{matrix}\right.\)

Vậy pt có tập nghiệm \(S=\left\{0;11\right\}\)

d) \(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\Leftrightarrow x^2-6x+9-x^2-4x+32=1\)

\(\Leftrightarrow41-10x=1\)

\(\Leftrightarrow-10x=40\)

\(\Leftrightarrow x=-4\)

Vậy pt có nghiệm duy nhất x = -4.

e) \(3\left(x+2\right)^2+\left(2x-1\right)^2-7\left(x+3\right)\left(x-3\right)=36\)

\(\Leftrightarrow3\left(x^2+4x+4\right)+4x^2-4x+1-7x^2+36=36\)

\(\Leftrightarrow3x^2+12x+12+4x^2-4x+1-7x^2=0\)

\(\Leftrightarrow8x=-13\)

\(\Leftrightarrow x=-\frac{13}{8}\)

Vậy pt có nghiệm duy nhất \(x=-\frac{13}{8}\)

1 tháng 11 2021

1.a) 2x4-4x3+2x2

=2x2(x2-2x+1)

=2x2(x-1)2

b) 2x2-2xy+5x-5y

=2x(x-y)+5(x-y)

=(2x+5)(x-y)

2.

a) 4x(x-3)-x+3=0

=>4x(x-3)-(x-3)=0

=>(4x-1)(x-3)=0

=> 2 TH:

*4x-1=0            *x-3=0

=>4x=0+1        =>x=0+3

=>4x=1           =>x=3

=>x=1/4

vậy x=1/4 hoặc x=3

b) (2x-3)^2-(x+1)^2=0

=> (2x-3-x-1).(2x-3+x+1)=0

=>(x-4).(3x-2)=0

=> 2 TH

*x-4=0

=> x=0+4

=> x=4

*3x-2=0

=>3x=0-2

=>3x=-2

=>x=-2/3 

vậy x=4 hoặc x=-2/3

1 tháng 11 2021

sửa 1 chút phần cuối:

3x-2=0

=>3x=0+2

=>3x=2

=>x=2/3

vậy x=2/3 hoặc....

15 tháng 11 2017

2)

a) \(3x^3-3x=0\)

\(\Leftrightarrow3x\left(x^2-1\right)=0\)

\(\Leftrightarrow3x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)

Vậy x=0 ; x=-1 ; x=1

b) \(x^2-x+\dfrac{1}{4}=0\)

\(\Leftrightarrow x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\dfrac{1}{2}=0\)

\(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(x=\dfrac{1}{2}\)

15 tháng 11 2017

1)

a) \(\left(x-2\right)\left(x^2+3x+4\right)\)

\(\Leftrightarrow x^3+3x^2+4x-2x^2-6x-8\)

\(\Leftrightarrow x^3+x^2-2x-8\)

b) \(\left(x-2\right)\left(x-x^2+4\right)\)

\(=x^2-x^3+4x-2x+2x^2-8\)

\(=3x^2-x^3+2x-8\)

c) \(\left(x^2-1\right)\left(x^2+2x\right)\)

\(=x^4+2x^3-x^2-2x\)

d) \(\left(2x-1\right)\left(3x+2\right)\left(3-x\right)\)

\(=\left(6x^2+4x-3x-2\right)\left(3-x\right)\)

\(=18x^2+12x-9x-6-6x^3-4x^2+3x^2+2x\)

\(=17x^2+5x-6-6x^3\)

8 tháng 1 2018

Bài 2: a) \(3x^3-3x=0\Leftrightarrow3x\left(x^2-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

b) \(x^2-x+\frac{1}{4}=0\Leftrightarrow x^2-2.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)

5 tháng 10 2017

Tìm x : b) x3 - 3x + 2 = 0

=> \(x^3-x^2+x^2-x-2x+2=0\)

=>\(x^2\left(x-1\right)+x\left(x-1\right)-2\left(x-1\right)=0\)

=>\(\left(x-1\right)\left(x^2+x-2\right)=0\)

=>\(\left(x-1\right)\left(x-1\right)\left(x+2\right)=0\)

=>\(x=1\)hoặc \(x=-2\)

5 tháng 10 2017

 Tìm x :

a) 5x2 - 4( x2 - 2x +1 ) - 5 = 0

=> 5x2-4x2+8x-4=0

=> x2+8x-4=0

=>(\(x-4+2\sqrt{5}\)).\(\left(x+4+2\sqrt{5}\right)\)=0

=> \(x=4-2\sqrt{5}\)hoặc \(x=-4-2\sqrt{5}\)

b) x3 - 3x + 2 = 0

24 tháng 7 2017

2/ 5x ( 12x + 7 ) - ( 3x + 1 ) ( 20x - 5 ) = -100

\(\Leftrightarrow\) 60x2 + 35x - 60x2 + 15x - 20x + 5 = -100

\(\Leftrightarrow\) 30x = -100 - 5

\(\Leftrightarrow\) x = - 3,5

24 tháng 7 2017

4/ ( x + 5 ) 2 + ( x + 4 ) ( x - 4 ) = 0

\(\Leftrightarrow\) x2 + 10x + 25 + x2 - 4 = 0

\(\Leftrightarrow\) 2x2 + 10x + 21 = 0

---> Phương trình vô nghiệm

Sửa đề bài : 4/ ( x + 5 ) 2 - ( x + 4 ) ( x - 4 ) = 0

\(\Leftrightarrow\) x2 + 10x + 25 - x2 + 4 = 0

\(\Leftrightarrow\) 10x = - 29

\(\Leftrightarrow\) x = \(-\dfrac{29}{10}\)

Vậy phương trình có nghiệm.......

21 tháng 12 2018

1) \(2x\left(x-3\right)+5x-15=0\)

\(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-5}{2}\end{matrix}\right.\)

2) \(x\left(2x-7\right)-4x+14=0\)

\(x\left(2x-7\right)-2\left(2x-7\right)=0\)

\(\left(2x-7\right)\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x-7=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=2\end{matrix}\right.\)

3) \(x^2-12x+36=0\)

\(\left(x-6\right)^2=0\)

\(x-6=0\)

\(x=6\)

4) \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x-1\right)\left(x+1\right)-27=0\)

\(\left(x^3+3^3\right)-x\left(x^2-1\right)-27=0\)

\(x^3+27-x^3+x-27=0\)

\(x=0\)