Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Do (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên x2 \(\notin\){ 1; 4; 7; 10} (Vì nếu thuộc tích trên sẽ bằng 0)
2.Vì x2 là số chính phương nên x2 \(\notin\){ 2; 3; 5; 6; 7; 8}
3.Ta có x2 không bé hơn hay bằng 0, vì nếu không x2 - 1, x2 - 4, x2 - 7 và x2 - 10 sẽ là 4 số nguyên âm => Tích (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) là số nguyên dương (trái với đề) => x2 > 0. Mặt khác x2 < 11 vì (x2 - 1) (x2 - 4).(x2 - 7).(x2 - 10) < 0 nên phair cos thừa số be hơn 0.
=> 0 < x2 < 11
Từ 3 điều trên ==> x2 = 9 => x = 3
b: \(\dfrac{2x+3}{3-x}\le0\)
\(\Leftrightarrow\dfrac{2x+3}{x-3}\ge0\)
=>x>3 hoặc x<=-3/2
c: \(\dfrac{x+5}{x+3}>1\)
\(\Leftrightarrow\dfrac{x+5-x-3}{x+3}>0\)
=>2/(x+3)>0
=>x+3>0
hay x>-3
lập bảng cho nành v10; v7\(=\sqrt{10};\sqrt{7}\)
x | -vc | -v10 | -v7 | -2 | -1 | 0 | 1 | 2 | v7 | v10 | +vc | ||||||||||
x+v10 | - | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
x+v7 | - | - | - | 0 | + | + | + | + | + | + | + | + | + | + | + | + | + | ||||
x+2 | - | - | - | - | - | 0 | + | + | + | + | + | + | + | + | + | + | + | ||||
x+1 | - | - | - | -- | - | 0 | + | + | + | + | + | + | + | + | + | ||||||
x-1 | - | - | - | - | 0 | + | |||||||||||||||
x-2 | - | - | - | - | 0 | + | |||||||||||||||
x-v7 | - | - | - | - | - | 0 | + | ||||||||||||||
x-v10 | - | - | - | - | - | - | 0 | + | |||||||||||||
VT | + | 0 | - | 0 | + | 0 | - | 0 | + | 0 | - | 0 | + | 0 | - | 0 | + | ||||
các khoảng x thỏa man la
-v10<x<-v7
-1<x<-2
1<x<2
v7<x<v10
x nguyen
=> x={-3,3}
https://olm.vn/hoi-dap/tim-kiem?q=Ch%E1%BB%A9ng+minh+r%E1%BA%B1ng:++(x2-1).(x2-4).(x2-7).(x2-10)%3C0&id=153167
a: \(=\left(-1\right)^{10}+\left(-1\right)^9+\left(-1\right)^8+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+\left(1-1\right)+...+\left(1-1\right)\)
=0
b: \(=\left(-1\right)^{100}+\left(-1\right)^{99}+...+\left(-1\right)^2+\left(-1\right)\)
\(=\left(1-1\right)+...+\left(1-1\right)\)
=0
c: \(=1^{100}-1^{99}+1^{98}-1^{97}+...+1^2-1\)
=0
f: \(=3\cdot\sqrt{9-5}+7=3\cdot2+7=13\)
Ta có bảng xét dấu sau:
x x - 1 x - 4 x - 7 x - 10 2 2 2 2 VT 10 10 7 7 - - -2 -1 1 2 0 0 0 0 0 0 0 0 - + + + + + + + + + + + + + + + + + + + + - - - - - - - - - - - - - - - 0 0 0 0 0 0 0 0 + + - - - - + + +
Để (x2 - 1)(x2 - 4)(x2 - 7)(x2 - 10) < 0 thì
\(-\sqrt{10}< x< -\sqrt{7}\) hoặc \(-2< x< -1\) hoặc \(1< x< 2\) hoặc \(\sqrt{7}< x< \sqrt{10}\)
Do x nguyên nên x = - 3 hoặc x = 3.
(x2-1).(x2-4).(x2-9).(x2-10) \(\ge\)0 => cả 4 số (x2-1); (x2-4); (x2-9); (x2-10) đều không âm hoặc không dương hoặc có 2 số không dương và 2 số không âm
Nhận xét: x2-1 > x2-4 > x2-9 > x2-10 ( Vì -1 > -4 > -9 > -10). Do đó:
+) Nếu 4 số cùng không âm thì x2-1 > x2-4 > x2-9 > x2-10 \(\ge\) 0 => x2 \(\ge\) 10 . Vì x nguyên => x = 4; 5 ; 6;....hoặc -4;-5;-6;...
+) Nếu 4 số cùng không dương thì 0 \(\ge\)x2-1 > x2-4 > x2-9 > x2-10 => x2 - 1 \(\le\) 0 => x2 \(\le\) 1 Mà x2 \(\ge\) 0 nên x2 = 1 => x =1 hoặc x = -1
+) Nếu có 2 số không âm và số không dương thì x2-1 > x2-4 \(\ge\) 0 \(\ge\) x2-9 > x2-10
=> x2 \(\ge\) 4 và x2 \(\le\) 9. Vì x nguyên => x2 = 4 hoặc 9 => x = -2; 2; hoặc -3; 3
Vậy với mọi x nguyên đều thỏa mãn y/c
Các bn coi m làm đúng hg nhak
Giải
(x2+1)(x2-10)< 0 khi x2+1 và x2-10 khác dấu
Mà x2+1 > x2-10 nên x2+1> 0 và x2-10<0, ta có
x2+1 > 0 => x2>-1
x2-10 < 0 => x2< 10
=> -1 < x2 < 10
=>x = +-1 hoặc +-2 hoặc +-3