Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+2x\right)\left(x^2+2x-2\right)=3\)
\(\Leftrightarrow x^4+4x^3+2x^2-4x=3\)
\(\Leftrightarrow x^4+4x^3+2x^2-4x-3=3-3\)
\(\Leftrightarrow x^4+4x^3+2x^2-4x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x+3\right)\left(x-1\right)=0\)
Dễ rồi, tự làm nốt đi
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
`Answer:`
a. \(x^3+6x^2+12=19\)
\(\Leftrightarrow x^3+6x^2+12x-19=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+19x-19=0\)
\(\Leftrightarrow x^2.\left(x-1\right)+7x\left(x-1\right)+19\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+19\right)=0\)
Ta có \(x^2+7x+19=x^2+2x.3,5+12,25+6,75=\left(x+3,5\right)^2+6,75>0\)
\(\Rightarrow x-1=0\Leftrightarrow x=1\)
b. \(5\left(x+9\right)^2.\left(x-4\right)^3-10\left(x+9\right)^3.\left(x-4\right)^2=0\)
\(\Leftrightarrow5\left(x+9\right)^2.\left(x-4\right)^2.[x-4-2\left(x+9\right)]=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(x-4-2x-18\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2.\left(x-4\right)^2.\left(-x-22\right)=0\)
\(\Leftrightarrow\left(x+9\right)^2=0\) hoặc \(\left(x-4\right)^2=0\) hoặc \(-x-22=0\)
\(\Leftrightarrow x+9=0\) hoặc \(x-4=0\) hoặc \(-x=22\)
\(\Leftrightarrow x=-9\) hoặc \(x=4\) hoặc \(x=-22\)
c. \(\left(2x+3\right)^2+\left(x-2\right)^2-2\left(2x+3\right)\left(x-2\right)\)
\(=\left(2x+3\right)^2-2\left(2x+3\right)\left(x-2\right)+\left(x-2\right)^2\)
\(=\left(2x+3-x+2\right)^2\)
\(=\left(x+5\right)^2\)
a) đk: x khác 1; \(\dfrac{3}{2}\)
\(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)
= \(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)
= \(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)
b) Có \(\left|3x-2\right|+1=5\)
<=> \(\left|3x-2\right|=4\)
<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)
TH1: Thay x = 2 vào P, ta có:
P = \(\dfrac{-1}{2.2-3}=-1\)
TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:
P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)
c) Để P > 0
<=> \(\dfrac{-1}{2x-3}>0\)
<=> 2x - 3 <0
<=> x < \(\dfrac{3}{2}\) ( x khác 1)
d) P = \(\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)
<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)
<=> 2x - 3 = x2 - 6
<=> x2 - 2x - 3 = 0
<=> (x-3)(x+1) = 0
<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)
( x + 2)^2 - 2x( 2x + 3) = ( x + 1)^2
<=>x2+4x+4-4x2-6x=x2+2x+1
<=>-3x2-2x+4=x2+2x+1
<=>x2+2x+1+3x2+2x-4=0
<=>4x2+4x+1-4=0
<=>(2x+1)2-4=0
<=>(2x+1-2)(2x+1+2)=0
<=>(2x-1)(2x+3)=0
<=>2x-1=0 hoặc 2x+3=0
<=>x=1/2 hoặc x=-3/2
a)2x.(x+3)-3.(x^2+1)=x+1-x.(x-2)
<=> 2x2 + 6x - 3x2 - 3 = x - 1 - x2 + 2x
<=> 2x2 + 6x - 3x2 - x + x2 - 2x = -1 +3
<=> 3x = 2
<=> x = 2/3
b)(x+2).(x-2)-(x-3).(x+5)=0
<=> x2 - 4 - x2 - 5x - 3x - 15 = 0
<=> -5x - 3x = 4 + 15
<=> -8x = 19
<=> x = -19/8
Phần c tương tự ạ
Trả lời:
( x + 3 )2 + ( x - 2 )2 = 2x2
<=> x2 + 6x + 9 + x2 - 4x + 4 = 2x2
<=> 2x2 + 2x + 13 = 2x2
<=> 2x2 + 2x + 13 - 2x2 = 0
<=> 2x + 13 = 0
<=> 2x = - 13
<=> x = - 13/2
Vậy x = - 13/2 là nghiệm của pt.