Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)<=>(x-4)(x-7)(x-5)(x-6)=1680
<=>(x2-11x+28)(x2-11x+30)=1680
đặt a=x2-11x+28 khi đó ptr trở thành :
a(a+2)=1680
=>a2+2a=1680
=>a2+2a+1=1681
=>(a+1)2=1681
=>a+1=41 hoặc a+1=-41
=>a=40 hoặc a=-42
=>x2-11x+28=40 hoặc -42
TH1:x2-11x+28=40
=>x2-11x+121/4-9/4=40
=>(x-11/2)2-9/4=40
=>(x-11/2)2=169/4
đến đây tự làm tiếp nhé
câu b thì nhóm x+2 với x-5 và x+3 với x-6 ,nhân vào phá ngoặc và đặt (như câu a) thôi
( x + 2)( x + 3)( x - 5)( x - 6) = 180
<=> ( x + 2)( x - 5)( x + 3)( x - 6) = 180
<=> ( x2 - 3x - 10 )( x2 - 3x - 18 ) = 180
Đặt : x2 - 3x - 14 = a , ta có :
( a + 4)( a - 4) = 180
<=> a2 - 16 - 180 = 0
<=> a2 - 196 = 0
<=> ( a - 14)( a + 14 ) = 0
<=> a = 14 hoặc a = -14
* Với , a = 14 , ta có :
x2 - 3x - 14 = 14
<=> x2 - 3x - 28 = 0
<=> x2 - 7x + 4x - 28 = 0
<=> x( x - 7) + 4( x - 7) = 0
<=> ( x + 4)( x - 7) = 0
<=> x = -4 hoặc : x = 7
* Với : a = -14 , ta có :
x2 - 3x - 14 = -14
<=> x( x - 3) = 0
<=> x = 0 hoặc : x = 3
Vậy,...
[(x+2)(x-5)][(x+3)(x-6)]=180
(x2-3x-10)(x2-3x-18)=180
Đặt x2-3x-10=y
y(y-8)=180
y2-8y-180=0
y2+10y-18y-180=0
y(y+10)-18(y+10)=0
(y+10)(y-18)=0
y={-10;18}
TH1: x2-3x-10= -10
x(x-3)=0
x={0;3}
TH2: x2-3x-10=18
x2-3x-28=0
x2+4x-7x-28=0
x(x+4)-7(x+4)=0
(x-7)(x+4)=0
x={-4;7}
Vậy x={-4;0;3;7}
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
Câu trên làm (a) câu này làm (b)
b)
\(\left(x^2+x-2\right)\left(x^2+x-3\right)=12\)
đặt: \(x^2+x-2=\left(x+\frac{1}{2}\right)^2-\frac{9}{4}=t\)
\(t\left(t-1\right)=12\Leftrightarrow t^2-t+\frac{1}{4}=12+\frac{1}{4}=\frac{49}{4}\)
\(\left(t-\frac{1}{2}\right)^2=\left(\frac{7}{2}\right)^2\Rightarrow\left[\begin{matrix}t=\frac{1-7}{2}=-3\left(loai\right)\\t=\frac{1+7}{2}=4\end{matrix}\right.\)
\(t=4\Leftrightarrow\left(x+\frac{1}{2}\right)^2=4+\frac{9}{4}=\frac{25}{4}\Rightarrow\left[\begin{matrix}x=\frac{-1-5}{2}=-3\\x=\frac{-1+5}{2}=2\end{matrix}\right.\)
\(\left(x^2+5x\right)+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)-10\left(x^2+5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(1-10\right)+14=0\)
\(\Leftrightarrow\left(-9\right)\left(x^2+5x\right)+14=0\)
\(\Leftrightarrow-9\left(x^2+5x\right)=-14\)
\(\Leftrightarrow x^2+5x=\frac{14}{9}\)
\(\Leftrightarrow x=0,2938.....\)
\(\left(x+2\right)\left(x+3\right)\left(x-5\right)\left(x-6\right)=180\)
\(\left[\left(x+2\right)\left(x-5\right)\right]\left[\left(x+3\right)\left(x-6\right)\right]=180\)
\(\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\)
Đặt \(x^2-3x-10=a\) ta có
\(a\left(a-8\right)=180\)
\(a^2-8a-180=0\)
\(\left(a-18\right)\left(a+10\right)=0=>\orbr{\begin{cases}a=18\\a=-10\end{cases}}\)
=> \(\orbr{\begin{cases}x^2-3x-10=18\\x^2-3x-10=-10\end{cases}}\) => \(\orbr{\begin{cases}x^2-3x-28=0\\x^2-3x=0\end{cases}}\)
Đến đây bn tự giải tiếp nhé