Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(|x-5|\le2\Leftrightarrow\orbr{\begin{cases}x-5\le2\\x-5\ge2\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le7\\x\ge3\end{cases}}}\)
b)\(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\Leftrightarrow\left(x^4-25x^2+100\right)\left(x^4-25x^2+150\right)< 0\\\)
bạn lm như thường nha
mk lười nhập quá
\(^{\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0}\)
=>\(x^2\left(1-20-15-10-5\right)< 0\)
=>\(^{x^2.\left(-49\right)< 0}\)
=>x2<49
=>x\(\in\)(\(\orbr{\begin{cases}1\\-1\end{cases}}\)\(,\orbr{\begin{cases}2\\-2\end{cases}},\orbr{\begin{cases}3\\-3\end{cases}},\orbr{\begin{cases}4\\-4\end{cases}},\orbr{\begin{cases}5\\-5\end{cases}},\orbr{\begin{cases}6\\-6\end{cases}}\))
Vì x<0=>x\(\in\)(-1,-2,-3,-4,-5,-6)
tk mình nhé
\(y\left(y-5\right)\left(y-10\right)\left(y-15\right)< 0\)y(y-5)(y-10)(y-15)<0
\(\left(y^2-15y\right)\left(y^2-15y+50\right)< 0\)(y^2-15y)(y^2-15y+50)
\(\left(z\right)\left(z+50\right)< 0\)
\(-50< z< 0\Rightarrow\hept{\begin{cases}y^2-15y< 0\Rightarrow0< y< 15\\y^2-15>-50dungvoi.\forall y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y>0\\y< 15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\Leftrightarrow\orbr{\begin{cases}x>5\\x< -5\end{cases}}\\x^2-5< 15\Rightarrow-10< x< 10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-5>0\Rightarrow x< -5hoac.x>5\\x^2-5< 10\Rightarrow-10< x< 10\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}-10< x< -5\\5< x< 10\end{cases}}\)
Để đẳng thức trên xảy ra thì phải có ít nhất 1 số âm hoặc 3 số âm
TH1:có 1 số âm
=>x2-20 < 0 <x2-15
=>15 < x2 <20
=> x2=16
=> x = +-4
TH2:có 3 số âm
=> x2-10 < 0 <x2-5
=> 5 < x2 <10
=> x2 =9
=>x=+-3. Vậy x=3;x=-3;x=4hoặc x=-4
Chắc lun đó bạn ạ.Chúc bạn học giỏi nha!
Để \(\left(x^2-20\right)\left(x^2-15\right)\left(x^2-10\right)\left(x^2-5\right)< 0\)
Thì phải có một sốâm và 3 số dương hoặc 1 số dương và 3 số âm
Mà \(x^2\ge0\forall x\)
\(\Rightarrow x^2-20< x^2-15< x^2-10< x^2-5\)
+ Với TH có 1 số âm và 3 số dương:
\(\Rightarrow\left\{{}\begin{matrix}x^2-20< 0\\x^2-15>0\end{matrix}\right.\)\(\Leftrightarrow15< x^2< 20\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)
+ Với TH có 1 số dương và 3 số âm:
\(\Rightarrow\left\{{}\begin{matrix}x^2-10< 0\\x^2-5>0\end{matrix}\right.\)\(\Leftrightarrow5< x^2< 10\Leftrightarrow x^2=9\Leftrightarrow x=\pm3\)
Vậy \(S=\left\{\pm3;\pm4\right\}\)