K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2019

a ) ( 6x + 1 )2 + ( 6x - 1 )2  - 2 . ( 6x + 1 )( 6x - 1 )

= ( 6x + 1 )2 - 2 . ( 6x + 1 )( 6x - 1 ) + ( 6x - 1 )2

= ( 6x + 1 - 6x + 1 )2

= 22 = 4

b ) x . ( 2x2 - 3 ) - x2 . ( 5x + 1 ) + x2

= 2x3 - 3x - 5x3 - x2 + x2

= ( 2x3 - 5x3 ) - 3x - ( x2 - x2 )

= - 3x3 - 3x

= - 3x . ( x2 + 1)

6 tháng 7 2017

a) -1

b)-27

chúc bn học tốt

6 tháng 7 2017

Ta cos : -(x + 3)(x - 4) + (x - 1)(x + 1) = 10

<=> -(x2 - x -12) + x2 + 1 = 10

<=> -x2 + x + 12 + x2 + 1 = 10

<=> x + 13 = 10

=> x = 10 - 13

=> x = -3

13 tháng 7 2015

1a/ x3+x2+x+1=0

x2(x+1).(x+1)=0

=>           x2(x+1)=0                     x =1

hoặc                               =>[

              x+1=0                        x=-1

 

b/(x+2)2=x+2

x2+2.x.2+2=x+2

x+x+4x+4=x+2

6x+4=x+2

....

c/(x+1)(6x2+2x)+(x-1)(6x2+2x)=0

x2-12 + (6x2+2x)2=0

=>               x2-1 = 0                   x=1

hoặc                               => [

              (6x2+2x)2=0                 x= 0

 

 

 

 

24 tháng 6 2018

a/ \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)

<=> \(\left(2x+3\right)^2-\left(4x^2-1\right)=22\)

<=> \(\left(2x+3\right)^2-4x^2+1=22\)

<=> \(\left(2x+3-2x\right)\left(2x+3+2x\right)=21\)

<=> \(3\left(4x+3\right)=21\)

<=> \(4x+3=7\)

<=> \(4x=4\)

<=> \(x=1\)

24 tháng 6 2018

......................?

mik ko biết

mong bn thông cảm 

nha ................

AH
Akai Haruma
Giáo viên
1 tháng 12 2019

Lời giải:

a) ĐKXĐ: $x\neq \pm 1$

\(\frac{x^4-4x^2+3}{x^4+6x^2-7}=\frac{x^2(x^2-1)-3(x^2-1)}{x^2(x^2-1)+7(x^2-1)}=\frac{(x^2-3)(x^2-1)}{(x^2-1)(x^2+7)}=\frac{x^2-3}{x^2+7}\)

b) ĐKXĐ: Với mọi $x\in\mathbb{R}$

\(\frac{x^4+x^3-x-1}{x^4+x^4+2x^2+x+1}=\frac{(x^4-x)+(x^3-1)}{(x^4+x^3+x^2)+(x^2+x+1)}=\frac{x(x^3-1)+(x^3-1)}{x^2(x^2+x+1)+(x^2+x+1)}\)

\(=\frac{(x^3-1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{(x-1)(x^2+x+1)(x+1)}{(x^2+1)(x^2+x+1)}=\frac{x^2-1}{x^2+1}\)

c) ĐK: $x\neq 1;-2$

\(\frac{x^3+3x^2-4}{x^3-3x+2}=\frac{x^2(x-1)+4(x^2-1)}{x^2(x-1)+x(x-1)-2(x-1)}=\frac{(x-1)(x^2+4x+4)}{(x-1)(x^2+x-2)}\)

\(=\frac{(x-1)(x+2)^2}{(x-1)(x-1)(x+2)}=\frac{x+2}{x-1}\)

d) ĐK: $x^2+3x-1\neq 0$

\(\frac{x^4+6x^3+9x^2-1}{x^4+6x^3+7x^2-6x+1}=\frac{(x^2+3x)^2-1}{(x^2+3x)^2-2x^2-6x+1}\)

\(=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x)^2-2(x^2+3x)+1}=\frac{(x^2+3x-1)(x^2+3x+1)}{(x^2+3x-1)^2}=\frac{x^2+3x+1}{x^2+3x-1}\)

14 tháng 8 2016

a) (x-2)- 6(x+1)2 - x3 + 12 = 0 

<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0

<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0

<=> -12x2+4=0

<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)

vậy pt có 2 nghiệm....

b) x3 - 6x2 + 12x - 8 = 0 

<=> (x3-2x2)-(4x2-8x)+(4x+8)=0

<=> (x-2)(x2-4x+4)=(x-2)3=0

=> x=2 là nghiệm

c) 8x3 - 12x2 + 6x - 1 = 0

<=> (2x-1)3=0

<=> x=1/2

14 tháng 8 2016

a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)

\(\Leftrightarrow-12x^2-2=0\)

\(\Leftrightarrow-2\left(6x^2+1\right)=0\)

\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)

Vậy không có giá trị nào của x thỏa mãn pt

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy x=2

c) \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(=\frac{1}{2}\)