K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

\(\frac{x}{1.3}+\frac{x}{3.5}+\frac{x}{5.7}+....+\frac{x}{97.99}=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}.\left(\frac{1}{1}-\frac{1}{99}\right)=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}.\frac{98}{99}=\frac{49}{99}\)

\(\Leftrightarrow\frac{x}{2}=\frac{49}{99}\div\frac{98}{99}\)

\(\Leftrightarrow\frac{x}{2}=\frac{1}{2}\)

\(\Leftrightarrow x=\frac{1}{2}\times2=1\)

16 tháng 7 2017

\(\frac{x}{1\cdot3}+\frac{x}{3\cdot5}+...+\frac{x}{97\cdot99}=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}\left[\frac{1}{1\cdot3}+\frac{1}{3\cdot5}+...+\frac{1}{97\cdot99}\right]=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}\left[\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99}\right]=\frac{97}{99}\)

\(\Rightarrow\frac{x}{2}\left[1-\frac{1}{99}\right]=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}\cdot\frac{98}{99}=\frac{49}{99}\)

\(\Rightarrow\frac{x}{2}=\frac{1}{2}\)

=> x = 1/2 * 2 = 1

=>2/1*3+2/3*5+...+2/(2x-1)(2x+1)=98/99

=>1-1/3+1/3-1/5+...+1/(2x-1)-1/(2x+1)=98/99

=>1-1/(2x+1)=98/99

=>1/(2x+1)=1/99

=>2x+1=99

=>x=49

21 tháng 5 2017

x = \(\frac{2}{99}\)

21 tháng 5 2017

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{97.99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{97}-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\left(1-\frac{1}{99}\right)-x=-\frac{100}{99}\)

\(\Rightarrow\frac{98}{99}-x=-\frac{100}{99}\)

\(\Rightarrow x=\frac{98}{99}-\left(-\frac{100}{99}\right)\)

\(\Rightarrow x=\frac{198}{99}=2\)

Vậy x = 2

mình làm được bài tìm x

x.(2/1.3+2/3.5+2/5.7+...+2/97.99)-x=-100/99

x.(1-1/3+1/3-1/4+1/4-1/5+1/5+...+1/97-1/97-1/99)-x=-100/99

x.(1-1/99)-x=-100/99

x.98/99-x=-100/99

x.98/99=-100/99+x

x.x=-100/99-98/99

2x=-198/99

x=-198/99/2

x=-1

27 tháng 6 2015

 

\(\frac{5}{1.2}+\frac{5}{2.3}+...+\frac{5}{99.100}-2x=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(5\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)-2x=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)

\(5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)\(5\left(1-\frac{1}{100}\right)-2x=\frac{1}{2}\left(1-\frac{1}{99}\right)\)

\(5.\frac{99}{100}-2x=\frac{1}{2}.\frac{98}{99}\)

\(\frac{99}{20}-2x=\frac{49}{99}\)

\(2x=\frac{99}{20}-\frac{49}{99}\)

\(2x=\frac{8821}{1980}\)

\(x=\frac{8821}{1980}:2\)

\(x=\frac{8821}{3960}\)

25 tháng 2 2017

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{97.99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{1}{2}\left(\frac{1}{1}-\frac{1}{99}\right)\)

\(\frac{1}{x}-\frac{1}{999}=\frac{1}{2}.\frac{98}{99}\)

\(\frac{1}{x}-\frac{1}{9999}=\frac{49}{99}\)

\(\frac{1}{x}=\frac{49}{99}+\frac{1}{9999}\)

\(\frac{1}{x}=\frac{50}{101}\)

\(x=1:\frac{50}{101}\)

\(x=\frac{101}{50}\)

Vậy \(x=\frac{101}{50}\)

5 tháng 5 2017

\(\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{97.99}\right)-x=-\dfrac{100}{99}\)

\(\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{97}-\dfrac{1}{99}\right)-x=-\dfrac{100}{99}\)

\(\left(1-\dfrac{1}{99}\right)-x=-\dfrac{100}{99}\)

\(\dfrac{98}{99}-x=-\dfrac{100}{99}\)

\(x=\dfrac{98}{99}-\left(-\dfrac{100}{99}\right)\)

\(x=\dfrac{198}{99}\)

Vậy \(x=\dfrac{198}{99}\)

12 tháng 4 2018

Ta có : 

\(\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(\left(1-\frac{1}{99}\right)-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(\frac{98}{99}-x=\frac{-100}{99}\)

\(\Leftrightarrow\)\(x=\frac{98}{99}+\frac{100}{99}\)

\(\Leftrightarrow\)\(x=\frac{198}{99}\)

\(\Leftrightarrow\)\(x=2\)

Vậy \(x=2\)

Chúc bạn học tốt ~ 

12 tháng 4 2018

98/99 - x = -100/99

x = 98/99 - -100/99

x = 198/99