Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2^x-8)^3=(4^x+2^x+5)^3-(4^x+13)^3
(2^x-8)^3=[(4^x+2^x+5)-(4^x+13)]*[(4^x... + (4^x+13)^2]
(2^x-8)^3=(2^x-8)*[(4^x+2^x+5)^2+(4^x+... + (4^x+13)^2]
2^x=8=>x=3
hoặc (2^x-8)^2=(4^x+2^x+5)^2+(4^x+2^x+5)(4^x+... + (4^x+13)^2
(4^x+2^x+5)^2 - (2^x-8)^2+(4^x+2^x+5)(4^x+13) + (4^x+13)^2=0
[(4^x+2^x+5)-(2^x-8)]*[(4^x+2^x+5)+(2^... + (4^x+3)*[(4^x+2^x+5)+(4^x+13)]=0
(4^x+13)*(4^x+2*2^x-3) + (4^x+3)*(2*4^x+2^x+18)=0
(4^x+13)[(4^x+2*2^x-3) + (2*4^x+2^x+18)]=0
4^x+13=0 (VN)
hoặc 3*4^x + 3*2^x +15=0
đặt t=2^x ( t>0)
t^2 + t + 5=0 ptvn
B1:
a)x=-3/5*9/25 =>x=-27/125
b)x=(4/7)6:(4/7)4 =>x=(4/7)2=16/49
c)(x/4)2=4:(x/2)
(x/4)2=8/x
x2/16=8/x2
x3=128
x=5,039
B2
M=23.10+22.10/23.4+22.11
=230+220/212+222
=230+28+222
=28(222+1+214)
=2
Ví dụ : Tìm tập hợp các ước của 24
Ư(24) = {1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 24 }
Ta có thể tìm các ước của a bằng cách lần lượt chia a cho
các số tự nhiên từ 1 đến a để xét xem a chia hết cho những
số nào ,khi đó các số ấy là ước của a
a/ Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\left(1\right)\\x^2+y^2=52\left(2\right)\end{cases}}\).
Từ (1) => \(\frac{x^2}{4}=\frac{y^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{52}{29}\)
=> \(\frac{x}{2}=\frac{52}{29}\)=> x = \(\frac{2.52}{29}\approx4\)
=> \(\frac{y}{5}=\frac{52}{29}\)=> y = \(\frac{5.52}{29}\approx9\)
Vậy \(x\approx4\)và \(y\approx9\).
<=> x-3 = 2/\(\sqrt{5}\) hoặc x-3 = -2/\(\sqrt{5}\)
<=> x= 2/\(\sqrt{5}\)+3 hoặc x= 3 - 2/\(\sqrt{5}\)
X=2,105572809
Mình chỉ biết như vậy thôi!