Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này đễ thôi
Giải |x-2015|2016 +|x-2016|2015=1
Vì |x-2015|2016 +|x-2016|2015=1 nên |x-2015|2016 hoặc |x-2016|2015 bằng 1 hoặc 0
Nên
-) Nếu |x-2015|2016 bằng 0 thì
x = 2015
-) Nếu |x-2015|2016 bẳng 1 thì
x = 2016
-) Nếu |x-2016|2015 bằng 0 thì
x = 2016
-) Nếu |x-2016|2015 bằng 1 thì :
x = 2017
Mà x chỉ có một nên trường hợp là |x-2016|2015 bằng 0 và |x-2015|2016 bằng 1
Nên x = 2016
Vậy x = 2016
a)Đặt \(A=2^{2016}+2^{2015}+...+2^1+2^0\)
\(2A=2\left(1+2+...+2^{2016}\right)\)
\(2A=2+2^2+...+2^{2017}\)
\(2A-A=\left(2+2^2+...+2^{2017}\right)-\left(1+2+...+2^{2016}\right)\)
\(A=2^{2017}-1\) thay vào ta có:
\(A=2^{2017}-\left(2^{2017}-1\right)=2^{2017}-2^{2017}+1=1\)
b)Ta thấy: \(\left|x\left(x-4\right)\right|\ge0\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
Ta có: \(x\left|x-4\right|=x\left(x\ge0\right)\)
- Nếu x=0 thì 0|0-4|=0 (đúng)
- Nếu x\(\ne\)0 thì ta có \(\left|x-4\right|=1\Leftrightarrow x-4=\pm1\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=5\\x=3\end{array}\right.\)
Vậy x=0;x=5;x=3 (thỏa mãn)
a) Đặt \(B=2^{2016}+2^{2015}+...+2^1+2^0\)
\(\Rightarrow B=1+2+...+2^{2015}+2^{2016}\)
\(\Rightarrow2B=2+2^2+...+2^{2016}+2^{2017}\)
\(\Rightarrow2B-B=\left(2+2^2+...+2^{2016}+2^{2017}\right)-\left(1+2+...+2^{2015}+2^{2016}\right)\)
\(\Rightarrow B=2^{2017}-1\)
Mà \(A=2^{2017}-B\)
\(\Rightarrow A=2^{2017}-\left(2^{2017}-1\right)\)
\(\Rightarrow A=1\)
Vậy A = 1
Ta thấy \(2015-\left|y-2015\right|=y\)nếu \(y\le0\)
và \(2015-\left|y-2015\right|=2015-y+2015\)nếu \(y>2015\)
Nếu \(y\ge2015\)thì \(y-2015-\left|y-2015\right|=y-y=0\)
\(\Leftrightarrow y=0;1;2;3;4;...;2015\)(vì y là số tự nhiên)
Nếu \(y>2015\)thì:
\(y-2015-\left|y-2015\right|=y-2015-y+2015=y-y=0\)
\(\Leftrightarrow y=2016;2017;.....\)
\(\Rightarrow x=0\)
Từ 2 trường hợp trên , ta có:
\(y=0;1;2;3;4;5;...\)hay \(y\in N\)
\(x=0\)
Ta thấy:\(2015-|y-2015|=y\)nếu \(y\le0\)
và \(2015-|y-2015|=2015-y+2015\)nếu \(y>2015\)
Nếu \(y\le2015\)thì:
\(y-2015-|y-2015|=y-y=0\)
\(\Leftrightarrow y=0;1;2;3;4;...;2015\)( Vì y là số tự nhiên )
\(\Rightarrow x=0\)( Vì \(2016^0-1=0\))
Nếu \(y>2015\)thì:
\(y-2015-|y-2015|=y-2015-y+2015=y-y=0\)
\(\Leftrightarrow y=2016;2017;...;+\infty\)
\(\Rightarrow x=0\)
Từ cả 2 trường hợp ta có:
\(y=0;1;2;3;4;...;+\infty\)hay \(y=N\)
\(x=0\)
(x-2015)^x+1 - (x-2015)^x+2015
=>x-2015= 0;1;-1
x-2015=0 =>x=2015
x-2015=1 =>x=2016
x-2015=-1 =>x=2014