Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+5}{3}=\frac{x-1}{4}\)
\(\Rightarrow\left(x+5\right).4=\left(x-1\right).3\)
\(\Rightarrow4x+20=3x-3\)
\(\Rightarrow4x-3x=-3-20\Rightarrow x=-23\)
\(\frac{x+5}{3}=\frac{x-1}{4}\)
\(\Rightarrow\left(x+5\right)\cdot4=\left(x-1\right)\cdot3\)
\(4x+20=3x-3\)
\(4x-3x=-3-20\)
\(x=-23\)
Vậy \(x=-23\)
b)\(\frac{27}{3^x}=3\)
\(\Rightarrow3^x=27:3\)
\(\Rightarrow3^x=9\Rightarrow x=2\)
còn câu a mình dg suy nghĩ
câu a hok biết làm
b) 27/3x = 3
=> 27 = 3x x 3
33 = 3x+1
=> 3 = x+1
=> x=2
câu a hình như sai đề phải
Để 1 phân số được xác định thì mẫu số của chúng phải khác 0
BÀI LÀM
ĐKXĐ: \(\left(x-1\right)\left(-2x+8\right)\ne0\)
\(\Leftrightarrow\)\(-2\left(x-1\right)\left(x-4\right)\ne0\)
\(\Leftrightarrow\) \(\orbr{\begin{cases}x-1\ne0\\x-4\ne0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy....
Vì \(\left|x-3,5\right|\ge0\); \(\left|4,5-x\right|\ge0\)
=> \(\left|x-3,5\right|+\left|4,5-x\right|\ge0\)
Mà theo đề bài: \(\left|x-3,5\right|+\left|4,5-x\right|=0\)
=> \(\begin{cases}\left|x-3,5\right|=0\\\left|4,5-x\right|=0\end{cases}\)=> \(\begin{cases}x-3,5=0\\4,5-x=0\end{cases}\)=> \(\begin{cases}x=3,5\\x=4,5\end{cases}\), vô lý vì x không thể cùng đồng thời nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
a) |x - 1,7| = 2,3
Xét 2 trường hợp:
TH1: x - 1,7 = -2,3
x = -2,3 +1,7
x = -0,6
TH2: x - 1,7 = 2,3
x = 2,3 + 1,7
x = 4
Vậy: Tự kl :<
\(\left|x-3,2\right|+\left|2x-\frac{1}{5}\right|=x+3.\)
ĐK : \(x+3\ge0\Leftrightarrow x\ge-3\)
Th1 : \(x-3,2+2x-\frac{1}{5}=x+3\)
\(x-3,2+2x=x+\frac{16}{5}\)
\(x+2x=x+\frac{32}{5}\)
\(2x=\frac{32}{5}\)
\(\Leftrightarrow x=3,2\)(tm)
\(x-3,2+2x-\frac{1}{5}=3-x\)
\(x-3,2+2x=3-x+\frac{1}{5}\)
\(x-3,2+2x=\frac{16}{5}-x\)
\(x+2x=\frac{16}{5}-x+3,2\)
\(x+2x=\frac{32}{5}-x\)
\(2x=\frac{32}{5}-x-x\)
\(2x=\frac{32}{5}-2x\)
\(4x=\frac{32}{5}\)
\(x=1,6\)(tm)
Vậy \(x=1,6\)hoặc \(x=3,2\)