Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Leftrightarrow\)\(\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Leftrightarrow\)\(\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
Vì \(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\)
Nên \(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy \(x=-3\)
Chúc bạn học tốt ~
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Leftrightarrow\)\(\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Leftrightarrow\) \(\left(x+3\right).\left(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
\(\Leftrightarrow\) \(x+3=0\) ( Vì \(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\ne0\) )
\(\Leftrightarrow\) \(x=-3\)
Vậy x = -3
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}-\frac{x+3}{2009}\)
\(\Rightarrow\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}+\frac{x+3}{2009}=0\)
\(\Rightarrow\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2010}+\frac{1}{2009}\right)=0\)
\(\Rightarrow x+3=0\Leftrightarrow x=-3\)
\(\left(\frac{x+4}{2007}+1\right)+\left(\frac{x+3}{2008}+1\right)=\left(\frac{x+2}{2009}+1\right)+\left(\frac{x+1}{2010}+1\right)\)
\(\left(\frac{x+2011}{2007}\right)+\left(\frac{x+2011}{2008}\right)=\left(\frac{x+2011}{2009}\right)+\left(\frac{x+2011}{2010}\right)\)
\(\frac{x+2011}{2007}+\frac{x+2011}{2008}-\frac{x+2011}{2009}-\frac{x+2011}{2010}=0\)
\(\left(x+2011\right).\left(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)=0\)
Vì \(\frac{1}{2007}+\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\)khác 0 (các số hạng ko bằng nhau)
\(\Leftrightarrow\)\(x+2011=0\)
\(\Rightarrow x=0-2011\)
\(\Rightarrow x=-2011\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+3}{2007}+1\right)+\left(\frac{x+4}{2006}+1\right)\)
\(\Rightarrow\left(\frac{x+1}{2009}+\frac{2009}{2009}\right)+\left(\frac{x+2}{2008}+\frac{2008}{2008}\right)=\left(\frac{x+3}{2007}+\frac{2007}{2007}\right)+\left(\frac{x+4}{2006}\frac{2006}{2006}\right)\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2007}+\frac{x+2010}{2006}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2007}-\frac{x+2010}{2006}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
=>x+2010=0
=>x=-2010
Vậy x = -2010
Trừ 1 đi ở mỗi phân số, ta có:
\(\frac{x-1}{2009}-1+\frac{x-2}{2008}-1=\frac{x-3}{2007}-1+\frac{x-4}{2006}-1\)
\(\Rightarrow\frac{x-1}{2009}-\frac{2009}{2009}+\frac{x-2}{2008}-\frac{2008}{2008}=\frac{x-3}{2007}-\frac{2007}{2007}+\frac{x-4}{2006}-\frac{2006}{2006}\)
\(\Rightarrow\frac{x-1-2009}{2009}+\frac{x-2-2008}{2008}=\frac{x-3-2007}{2007}+\frac{x-4-2006}{2006}\)
\(\Rightarrow\frac{x-2010}{2009}+\frac{x-2010}{2008}=\frac{x-2010}{2007}+\frac{x-2010}{2006}\)
\(\Rightarrow\left[x-2010\right]\left[\frac{1}{2009}+\frac{1}{2008}\right]=\left[x-2010\right]\left[\frac{1}{2007}+\frac{1}{2006}\right]\)
Sẽ có hai trường hợp
TH1: Cả hai vế đều bằng 0
Ta có: \(\hept{\begin{cases}\frac{1}{2009}+\frac{1}{2008}\ne0\\\frac{1}{2007}+\frac{1}{2006}\ne0\end{cases}}\Rightarrow x-2010=0\Rightarrow x=2010\)
TH2: Cả hai vế khác 0
Ta bỏ đi x - 2010 vì cả hai bên đều có
\(\Rightarrow\frac{1}{2009}+\frac{1}{2008}=\frac{1}{2007}+\frac{1}{2006}\)Vô lí
Vậy x = 2010
\(\frac{x-1}{2011}+\frac{x-2}{2010}+\frac{x-3}{2009}\)\(=\frac{x-4}{2008}\)
\(\Leftrightarrow\frac{x-2012+2011}{2011}+\frac{x-2012+2010}{2010}+\frac{x-2012+2009}{2009}=\frac{x-2012+2008}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2011}+1+\frac{x-2012}{2010}+1+\frac{x-2012}{2009}+1=\frac{x-2012}{2008}+1\)
\(\Leftrightarrow\frac{x-2012}{2011}+\frac{x-2012}{2010}+\frac{x-2012}{2009}+2=\frac{x-2012}{2008}\)
\(\Leftrightarrow\frac{x-2012}{2008}-\frac{x-2012}{2009}-\frac{x-2012}{2010}-\frac{x-2012}{2011}-2=0\)
=>Sai đề nha bạn!
áp dụng tính chất dãy tỷ số= nhau, ta có:
x-1/2011+x-2/2010+x-3/2009+x-4/2008=x-1+x-2+x-3+x-4/2011+2010+2009+2008
=x-1+x-2+x-3+x-4/8038
=(x-x+x-x)+[(1+4)+(-2+-3)]/8038
=0/8038
=0
Ta có : \(\frac{x+6}{2010}+\frac{x+5}{2009}=\frac{x+4}{2008}+\frac{x+3}{2007}\)
\(\Leftrightarrow\frac{x+6}{2010}-1+\frac{x+5}{2009}-1=\frac{x+4}{2008}-1+\frac{x+3}{2007}-1\)
\(\Leftrightarrow\frac{x-2004}{2010}+\frac{x-2004}{2009}=\frac{x-2004}{2008}+\frac{x-2004}{2007}\)
\(\Leftrightarrow\frac{x-2004}{2010}+\frac{x-2004}{2009}-\frac{x-2004}{2008}-\frac{x-2004}{2007}=0\)
\(\Leftrightarrow\left(x-2004\right)\left(\frac{1}{2010}+\frac{1}{2009}-\frac{1}{2008}-\frac{1}{2007}\right)=0\)
Mà : \(\frac{1}{2010}+\frac{1}{2009}-\frac{1}{2008}-\frac{1}{2007}\ne0\)
Nên : x - 2004 = 0
=> x = 2004
\(a,\frac{x+5}{2010}+\frac{x+6}{2009}+\frac{x+7}{2008}=-3\)
\(\Rightarrow\left(\frac{x+5}{2010}+1\right)+\left(\frac{x+6}{2009}+1\right)+\left(\frac{x+7}{2008}+1\right)=0\)
\(\Rightarrow\frac{x+2016}{2010}+\frac{x+2016}{2009}+\frac{x+2006}{2008}=0\)
chỉ bt lm v thoi "(
a) \(\frac{x+5}{2010}+\frac{x+6}{2009}+\frac{x+7}{2008}=-3\)
<=> \(\frac{x+5}{2010}+1+\frac{x+6}{2009}+1+\frac{x+7}{2008}+1=0\)
<=> \(\frac{x+2015}{2010}+\frac{x+2015}{2009}+\frac{x+2015}{2008}=0\)
<=> \(\left(x+2015\right)\left(\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}\right)=0\)
<=> \(x+2015=0\) (do 1/2010 + 1/2009 + 1/2008 # 0 )
<=> \(x=-2015\)
Vậy...
b) mạo phép chỉnh đề
\(\frac{x+2}{327}+\frac{x+3}{326}+\frac{x+4}{325}+\frac{x+344}{5}=0\)
<=> \(\frac{x+2}{327}+1+\frac{x+3}{326}+1+\frac{x+4}{325}+1+\frac{x+344}{5}-3=0\)
<=> \(\frac{x+329}{327}+\frac{x+329}{326}+\frac{x+329}{325}+\frac{x+329}{5}=0\)
làm tương tự a
\(\frac{x+3}{2007}-\frac{x+3}{2008}=\frac{x+3}{2010}+\frac{x+3}{2009}\)
=> \(\frac{x+3}{2007}-\frac{x+3}{2008}-\frac{x+3}{2010}-\frac{x+3}{2009}=0\)
=> \(\left(x+3\right)\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)=0\)
=> x + 3 = 0
=> x = 0 - 3
=> x = -3