Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\left|x-2\right|+2=x\)
\(\Leftrightarrow\left|x-2\right|=x-2\)
\(\Leftrightarrow x-2\ge0\Leftrightarrow x\ge2\)
2) \(x^2+5x+4=0\)
\(\Leftrightarrow x^2+4x+x+4=0\)
\(\Leftrightarrow x\left(x+4\right)+\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
3) \(8\sqrt{x}=x^2\)
Bình phương hai vế, ta được: \(64x=x^4\)
\(\Leftrightarrow x^4-64x=0\)
\(\Leftrightarrow x\left(x^3-64\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x^3-64=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)
4) \(\frac{x+29}{31}-\frac{x+27}{33}=\frac{x+17}{43}-\frac{x+15}{45}\)
\(\Leftrightarrow\frac{x+29}{31}-\frac{x+27}{33}-\frac{x+17}{43}+\frac{x+15}{45}=0\)
\(\Leftrightarrow\frac{x+29}{31}+1-\frac{x+27}{33}-1-\frac{x+17}{43}-1+\frac{x+15}{45}+1=0\)
\(\Leftrightarrow\frac{x+60}{31}+\frac{x+60}{45}-\frac{x+60}{33}-\frac{x+60}{43}=0\)
\(\Leftrightarrow\left(x+60\right)\left(\frac{1}{31}+\frac{1}{45}-\frac{1}{33}-\frac{1}{43}\right)=0\)
\(\Leftrightarrow x+60=0\Leftrightarrow x=-60\)
5)\(\left|x-1\right|+3x=1\)
\(\Leftrightarrow\left|x-1\right|=1-3x\)(1)
* Nếu \(x\ge1\)thì \(\left(1\right)\Leftrightarrow x-1=1-3x\Leftrightarrow4x=2\Leftrightarrow x=\frac{1}{2}\left(L\right)\)
* Nếu \(x< 1\)thì \(\left(1\right)\Leftrightarrow1-x=1-3x\Leftrightarrow2x=0\Leftrightarrow x=0\left(TM\right)\)
Vậy x = 0
a) \(-2\sqrt{x^2+1}=-8\)
=> \(\sqrt{x^2+1}=-8:\left(-2\right)\)
=> \(\sqrt{x^2+1}=4\)
=> \(x^2+1=16\)
=> \(x^2=16-1=15\)
=> \(\orbr{\begin{cases}x=\sqrt{15}\\x=-\sqrt{15}\end{cases}}\)
b) \(4+3\sqrt{x^2+2}=4\)
=> \(3\sqrt{x^2+2}=4-4=0\)
=> \(\sqrt{x^2+2}=0\)
=> \(x^2+2=0\)
=> \(x^2=-2\)
=> ko có giá trị x t/m
c)\(\sqrt{x+1}=3\)
=> \(x+1=9\)
=> x = 9 - 1 = 8
d) TT trên
\(F=\frac{4.\sqrt{x}+15}{2.\sqrt{x}+9}=\frac{4.\sqrt{x}+18-3}{2.\sqrt{x}+9}=\frac{2.\left(2.\sqrt{x}+9\right)}{2.\sqrt{x}+9}-\frac{3}{2.\sqrt{x}+9}=2-\frac{3}{2.\sqrt{x}+9}\)
Có: \(2.\sqrt{x}+9\ge9\Rightarrow\frac{3}{2.\sqrt{x}+9}\le\frac{1}{3}\)
\(\Rightarrow F=2-\frac{3}{2.\sqrt{x}+9}\ge\frac{5}{3}\)
Dấu "=" xảy ra khi \(2.\sqrt{x}=0\Rightarrow\sqrt{x}=0\Rightarrow x=0\)
Vậy Min F = \(\frac{5}{3}\)khi x = 0
Bài 1:
a, \(\sqrt{x}+98=498\)
\(\Leftrightarrow\sqrt{x}=400\Leftrightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
b, \(\frac{9}{7}+\sqrt{\frac{1600}{100}}-x+5=\frac{1920}{17}\)
\(\Leftrightarrow-x=\frac{1920}{17}-5-\frac{9}{7}-4\)
\(\Leftrightarrow-x=\frac{12216}{119}\Leftrightarrow x=-\frac{12216}{119}\)
c, \(3728+\left(-x\right)=0\)
\(\Leftrightarrow3728-x=0\Leftrightarrow x=3728\)
d, \(\left(-45\right)+6-\sqrt{x}=43\)
\(\Leftrightarrow-\sqrt{x}=43-6+45\)
\(\Leftrightarrow-\sqrt{x}=82\Leftrightarrow\sqrt{x}=-82\)
=> phương trình vô nghiệm vì \(\sqrt{x}\ge0\)
Bài 2:
Không có liên hệ cụ thể giữa a và b thì khó tìm lắm bạn ơi, vì nó có rất nhiều kết quả, nếu cần thì nhắn cho mình, mình liệt kê hết cho
f)
\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)
x-3={-4)=> x=-1
x+1=15-\(\sqrt{36}\)x
<=>x+1=15-6x
<=>x+6x=15-1
<=>7x=14
<=>x=2
\(4\sqrt{x}=28\)
=>\(\sqrt{x}=7\)
=>x=49