Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
PT <=> (2015x - 2014)3 = (2x - 2)3 + (2013x - 2012)3
<=> (2015x - 2014)3 = (2x - 2 + 2013x - 2012). [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]
<=> (2015x - 2014)3 = (2015x - 2014). [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]
<=> (2015x - 2014).[ (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2]] = 0
<=> 2015.x - 2014 = 0 hoặc (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2] = 0
+) 2015x - 2014 = 0 => x = 2014/2015
+) (2015x - 2014)2 - [(2x-2)2 - (2x - 2).(2013x - 2012) + (2013x - 2012)2] = 0
<=> [(2x - 2) + (2013x - 2012)]2 - (2x - 2)2 + (2x - 2).(2013x - 2012) - (2013x - 2012)2 = 0
<=> 3. (2x - 2).(2013x - 2012) = 0
<=> 2x - 2 = 0 hoặc 2013x - 2012 = 0
<=> x = 1 hoặc x = 2012/2013
Vậy....
\(x^4-2015x^3+2015x^2-2015x+2015\)
\(=x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+x+1\)(vì x=2014 nên 2015=x+1)
\(=x^4-x^4-x^3+x^3+x^2-x^2-x+x+1\)
\(=1\)
Theo đề bài ta suy ra:
\(\left(x-2014\right)^3+\left(x+2012\right)^3=\left[2\left(x-1\right)\right]^3\Rightarrow\left(x-2014\right)^3+\left(x+2012\right)^3=\left(2x-2\right)^3\)(1)
Đặt \(\hept{\begin{cases}x-2014=a\\x+2012=b\end{cases}\Rightarrow}2x-2=a+b\)
Khi đó từ (1), ta có:
\(a^3+b^3=\left(a+b\right)^3\Rightarrow a^3+b^3=a^3+b^3+3ab\left(a+b\right)\Rightarrow3ab\left(a+b\right)=0\)
\(\Rightarrow3\left(x-2014\right)\left(x+2012\right)\left(2x-2\right)=0\)
Từ đó tìm được \(x\in\left\{2014;-2012;1\right\}\)
A = 2015 - 2015x + 2015x2 - 2015x3 + 2015x4 - 2015x5 +.....+ 2015x2015
A = 2015.(1-x+x2-x3+x4-x5+...+x2015)
Thay x = 2014 và đặt
B = 1-2014+20142-20143+20144-20145+...+20142015
2014B = 2014-20142+20143-20144+20155-20146+...+20142016
2015B = 2014B + B = 1 + 20142016
=> B = \(\frac{1+2014^{2016}}{2015}\)
=> A = 2015.\(\frac{1+2014^{2016}}{2015}\)
=> A = 1+ 20142016
\(\Leftrightarrow\left(x-2014+x+2012\right)^3-3\cdot\left(x-2014\right)\left(x+2012\right)\left(x-2014+x+2012\right)=\left(2x-2\right)^3\)
=>3(x-2014)(x+2012)(2x-2)=0
=>\(x\in\left\{2014;-2012;1\right\}\)
Nhận xét: Tổng các hệ số của phương trình bằng 0 => phương trình có 1 nghiệm là 1
=> vế trái có nhân tử (x - 1)
pt <=> (x4 - 1 ) + (2015x3 - 2015x2) - (2015x - 2015) = 0
<=> (x-1)(x+1).(x2 + 1) + 2015x2(x - 1) - 2015.(x - 1) = 0
<=> (x - 1).[(x+1).(x2 + 1) + 2015x2 - 2015] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x2 - 1)] = 0
<=> (x -1). [(x+1).(x2 + 1) + 2015(x - 1)(x+1)] = 0
<=> (x -1).(x+1).(x2 + 1 + 2015x - 2015 ) = 0
<=> x - 1 = 0 hoặc x+ 1 = 0 hoặc x2 + 1 + 2015x - 2015 = 0
+) x - 1 = 0 <=> x = 1
+) x + 1 = 0 <=> x = -1
+) x2 + 1 + 2015x - 2015 = 0 <=> x2 + 2015x - 2014 = 0
<=> x2 +2.x. \(\frac{2015}{2}\) + \(\left(\frac{2015}{2}\right)^2\) - \(\left(\frac{2015}{2}\right)^2\) - 2015 = 0
<=> \(\left(x-\frac{2015}{2}\right)^2=\frac{2015^2+4030}{2}\)
<=> \(x-\frac{2015}{2}=\sqrt{\frac{2015^2+4030}{2}}\) hoặc \(x-\frac{2015}{2}=-\sqrt{\frac{2015^2+4030}{2}}\)
<=> \(x=\frac{2015}{2}+\sqrt{\frac{2015^2+4030}{2}}\)hoặc \(x=\frac{2015}{2}-\sqrt{\frac{2015^2+4030}{2}}\)
Vậy pt có 4 nghiệm...
chính xác nè bạn nhớ sai ruj:
x4+2015x2+2014x+2015=0
<=>x4-x+2015x2+2015x+2015=0
<=>x(x3-1)+2015(x2+x+1)=0
<=>x(x-1)(x2+x+1)+2015(x2+x+1)=0
<=>(x2+x+1)[x(x-1)-2015]=0
<=>(x2+x+1)(x2-x-2015)=0
<=>x2+x+1=0 hoặc x2-x-2015=0
*x2+\(2x.\frac{1}{2}\)+\(\frac{1}{4}+\frac{3}{4}\)=0
<=>(x+1/2)2+3/4=0(vô lí)
*x2-\(2x.\frac{1}{2}+\frac{1}{4}-\frac{8061}{4}\)
<=>(x-1/2)2-8061/4=0
<=>(x-1/2)2 =8061/4
<=>x-1/2 =\(\sqrt{\frac{8061}{4}}\)
<=>x =\(\sqrt{\frac{8061}{4}+}\frac{1}{2}\)
\(x^2-2015x+2014=0\)
\(x^2-x-2014x+2014=0\)
\(x\left(x-1\right)-2014\left(x-1\right)=0\)
\(\left(x-1\right)\left(x-2014\right)=0\)
TH1:x -1 = 0
=>x=1
TH2 : x-2014=0
=> x=2014
\(x^3-4x=0\)
\(x\left(x^2-4\right)=0\)
\(x\left(x-4\right)\left(x+4\right)=0\)
TH1: x=0
TH2:x-4=0
=> x= 4
TH3: x+4=0
=> x=(-4)
Hok tốt