K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2018

\(x^3+9x=0\)

<=> \(x\left(x^2+9\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2+9=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=0\\x\in\varnothing\end{cases}}\)

<=> \(x=0\)

\(9x^2-4-2\left(3x-2\right)^2=0\)

<=> \(\left(9x^2-4\right)-2\left(3x-2\right)^2=0\)

<=> \(\left[\left(3x\right)^2-2^2\right]-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left(3x+2\right)-2\left(3x-2\right)^2=0\)

<=> \(\left(3x-2\right)\left[\left(3x+2\right)-2\left(3x-2\right)\right]=0\)

<=> \(\left(3x-2\right)\left(3x+2-6x+4\right)=0\)

<=> \(\left(3x-2\right)\left(-3x+6\right)=0\)

<=> \(\left(3x-2\right)3\left(-x+2\right)=0\)

<=> \(3\left(3x-2\right)\left(2-x\right)=0\)

<=> \(\orbr{\begin{cases}3x-2=0\\2-x=0\end{cases}}\)

<=> \(\orbr{\begin{cases}3x=2\\x=2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=\frac{2}{3}\\x=2\end{cases}}\)

\(\left(x^3-x^2\right)-4x+8x-4=0\)

<=> \(\left(x^3-x^2\right)+\left(4x-4\right)=0\)

<=> \(x^2\left(x-1\right)+4\left(x-1\right)=0\)

<=> \(\left(x-1\right)\left(x^2+4\right)=0\)

<=> \(\orbr{\begin{cases}x-1=0\\x^2+4=0\end{cases}}\)

<=> \(x=1\)

\(\left(25x^2-10x\right):\left(-5x\right)-3\left(x-2\right)=4\)

<=> \(5x\left(5x-2\right)\left(-\frac{1}{5x}\right)-3\left(x-2\right)=4\)

<=> \(-\left(5x-2\right)-3\left(x-2\right)=4\)

<=> \(\left(5x-2\right)+3\left(x-2\right)=-4\)

<=> \(5x-2+3x-6=-4\)

<=> \(8x-8=-4\)

<=> \(8\left(x-1\right)=-4\)

<=> \(x-1=-\frac{1}{2}\)

<=> \(x=-\frac{3}{2}\)

26 tháng 2 2022

hic, mk chx học

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

a)

\((x-3)(x-5)(x-6)(x-10)=24x^2\)

\(\Leftrightarrow [(x-3)(x-10)][(x-5)(x-6)]=24x^2\)

\(\Leftrightarrow (x^2-13x+30)(x^2-11x+30)=24x^2\)

Đặt \(x^2-11x+30=a\). PT trở thành:
\((a-2x)a=24x^2\)

\(\Leftrightarrow a^2-2ax-24x^2=0\)

\(\Leftrightarrow a^2-6ax+4ax-24x^2=0\)

\(\Leftrightarrow a(a-6x)+4x(a-6x)=0\)

\(\Leftrightarrow (a+4x)(a-6x)=0\)

\(\Rightarrow \left[\begin{matrix} a+4x=0\\ a-6x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x^2-7x+30=0\\ x^2-17x+30=0\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} (x-3,5)^2+17,75=0(\text{vô lý})\\ (x-15)(x-2)=0\end{matrix}\right.\)

\(\Rightarrow x=15\) hoặc $x=2$

AH
Akai Haruma
Giáo viên
29 tháng 7 2018

b)

Đặt \(x-7=a\). PT trở thành:

\((a+1)^4+(a-1)^4=272\)

\(\Leftrightarrow a^4+4a^3+6a^2+4a+1+a^4-4a^3+6a^2-4a+1=272\)

\(\Leftrightarrow 2a^4+12a^2+2=272\)

\(\Leftrightarrow a^4+6a^2-135=0\)

\(\Leftrightarrow (a^2+3)^2-144=0\Leftrightarrow (a^2+3)^2-12^2=0\)

\(\Leftrightarrow (a^2+15)(a^2-9)=0\)

\(\Rightarrow a^2-9=0\Rightarrow a=\pm 3\)

\(\Rightarrow x=a+7=\left[\begin{matrix} 4\\ 10\end{matrix}\right.\)

5 tháng 8 2018

1) \(\left(5x-4\right)\left(4x-5\right)+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41x+20+\left(5x-1\right)\left(x+4\right)+3\left(3x-2\right)\)

\(=20x^2-41+20+5x^2+19x-4+3\left(3x-2\right)\)

\(=20x^2-41x+20+5x^2+19x-4+9x-4\)

\(=25x^2-13x+10\)

2) \(\left(5x-4\right)^2+\left(16-25x^2\right)+\left(5x+4\right)\left(3x+2\right)\)

\(=\left(5x-4\right)^2+16-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+\left(5x-4\right)\left(3x+2\right)\)

\(=25x^2-40x+16^2-25x^2+15x^2-2x-8\)

\(=15x^2-42x+24\)

10 tháng 2 2019

a)\((x^2- 4).(x^2 - 10) = 72 Đặt x^2 - 7 = a(1), ta có (a+3)(a-3)=72 a^2-9=72 a^2=81 a=+-9 xét 2 trường hợp a = 9 và -9 khi thay vào (1) ta có..... tự lm nốt nha \)

10 tháng 2 2019

b) nhóm x+1 vs x+4 và x+2 vs x+3 ta sẽ có (x2+5x+4)(x2+5x+6)(x+5)=40

17 tháng 6 2019

\(A=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2-4a^2b^2\)

\(=\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\left(a^2+b^2-c^2-a^2+b^2-c^2\right)-4a^2b^2\)

\(=2a^2.2b^2-4a^2b^2=0\)

\(C=\left(2-6x\right)^2+\left(2-5x\right)^2+2\left(6x-2\right)\left(2-5x\right)\)

\(=\left[\left(2-6x\right)+\left(2-5x\right)\right]^2\)

\(=\left[4-11x\right]^2\)

\(=16-88x+121x^2\)

chúc bn học tốt

6 tháng 4 2020

câu a, b, c dễ mà. Bạn áp dụng 7 hằng đẳng thúc là làm đc thoii!!

vd: a) \(\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)=\left(3x+2\right)\left(x-1\right)\left(x+1\right)\)

\(\Rightarrow\left(3x-2\right)\left(3x+2\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)[\left(3x-2\right)-\left(x-1\right)]=0\)

\(\Rightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\) (bạn phá ngoặc ra rồi tính là ra bước này)

\(\Leftrightarrow3x+2=0\) hoặc \(x+1=0\) hoặc \(2x-1=0\) ( đến đây bạn chia làm 3 trường hợp r tự tính nhé)

Chúc bạn học tốt!!

NV
6 tháng 4 2020

d/

\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)

\(\Leftrightarrow\left(x^3+1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)

e/

\(\Leftrightarrow x^3+x^2-6x-x^2-x+6=0\)

\(\Leftrightarrow x\left(x^2+x-6\right)-\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)\left(x+3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=-3\end{matrix}\right.\)

13 tháng 10 2018

\(a.x^4-16x^2=0\Leftrightarrow\left(x^2+4x\right)\left(x^2-4x\right)=0\)

\(\Leftrightarrow x^2\left(x+4\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+4=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)

\(b.\left(x-5\right)^3-x+5=0\)

\(\Leftrightarrow\left(x-5\right)^3-\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\left(x-5\right)^2-1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)

13 tháng 10 2018

a) x4 - 16x2 = 0

<=> x2 ( x2 - 16 ) = 0

<=> \(\left[{}\begin{matrix}x^2=0\\x^2-16=0\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=0\\x=-4\\x=4\end{matrix}\right.\)

Vậy...

b) ( x - 5)3 - x + 5 = 0

<=> ( x - 5)3 - (x - 5) = 0

<=> (x - 5) [ (x - 5)2 - 1] =0

<=> \(\left[{}\begin{matrix}x-5=0\\\left(x-5\right)^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\\left(x-5\right)^2=1\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=5\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)

Vậy...

c) 5(x - 2) = x2 - 4

<=> 5(x - 2) - (x2 - 4) = 0

<=> (x - 2)( 5 - x - 2) = 0

<=> (x - 2)( 3 - x ) = 0

<=> \(\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy...

d) x - 3 = (3 - x)2

<=> x - 3 - (x - 3)2 = 0

<=> (x - 3)(1 - x + 3) = 0

<=> (x - 3)( 4 - x ) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Vậy...

e) x2 (x - 5) + 5 - x = 0

<=> x2 (x - 5) - (x - 5) = 0

<=> (x2 - 1)( x - 5) = 0

<=> \(\left[{}\begin{matrix}\left(x-1\right)\left(x+1\right)=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=5\end{matrix}\right.\)

,