Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a)\) \(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
\(\Leftrightarrow\)\(\left(2x+1\right)\left(0,5x+2\right)=\left(x+1\right)\left(x+3\right)\)
\(\Leftrightarrow\)\(2x\left(0,5x+2\right)+0,5x+2=x\left(x+1\right)+3\left(x+1\right)\)
\(\Leftrightarrow\)\(x^2+4x+0,5+2=x^2+x+3x+3\)
\(\Leftrightarrow\)\(x^2+4x-x^2-4x=3-0,5-2\)
\(\Leftrightarrow\)\(0=0,5\) ( vô lí :'< )
Vậy không có x thoả mãn đề bài
a) \(\left|0,5x-2\right|-\left|x+\frac{1}{3}\right|=0\)
=> \(\left|0,5x-2\right|=\left|x+\frac{1}{3}\right|\)
=> \(\orbr{\begin{cases}0,5x-2=x+\frac{1}{3}\\0,5x-2=-x-\frac{1}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}-0,5x=\frac{7}{3}\\1,5x=\frac{5}{3}\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{14}{3}\\x=\frac{10}{9}\end{cases}}\)
b) \(2x-\left|x+1\right|=\frac{1}{2}\)
=> \(\left|x+1\right|=2x-\frac{1}{2}\) (Đk: \(2x-\frac{1}{2}\ge0\) <=> \(x\ge\frac{1}{4}\))
=> \(\orbr{\begin{cases}x+1=2x-\frac{1}{2}\\x+1=\frac{1}{2}-2x\end{cases}}\)
=> \(\orbr{\begin{cases}-x=-\frac{3}{2}\\3x=-\frac{1}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{3}{2}\\x=-\frac{1}{6}\end{cases}}\)
\(\hept{\begin{cases}\text{|}0,5x\text{|}=0,5x\\\sqrt{\left(0,5x\right)^2}=0,5x\\\left(0,5x\right)^2=\left(0,5x\right)^2\end{cases}}\)
2, tương tự
\(\hept{\begin{cases}\text{|}-\frac{2}{3}x\text{|}=\frac{2}{3}x\\\sqrt{\left(-\frac{2}{3}x\right)^2}=\frac{2}{3}x\\\left(-\frac{2}{3}x\right)^2=\left(\frac{2}{3}x\right)^2\end{cases}}\)
4, tương tự
b) \(\left(5x-1\right)\left(2x-\frac{1}{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\2x-\frac{1}{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\2x=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{5}\\x=\frac{1}{6}\end{matrix}\right.\)
e, \(-\frac{3}{4}-\left|\frac{4}{5}-x\right|=-1\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=-\frac{3}{4}-\left(-1\right)\)
\(\Leftrightarrow\left|\frac{4}{5}-x\right|=\frac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{4}{5}-x=\frac{1}{4}\\\frac{4}{5}-x=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{7}{15}\\x=1,05\end{matrix}\right.\)
Vậy ....
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x+1}{2x+1}=\frac{0,5+2}{x+3}=\frac{\left(x+1\right)-2.\left(0,5x+2\right)}{\left(2x+1\right)-2.\left(x+3\right)}=\frac{x+1-x-4}{2x+1-2x-6}=\frac{-3}{-5}=\frac{3}{5}\)
suy ra:
\(\frac{x+1}{2x+1}=\frac{3}{5}\Rightarrow5.\left(x+1\right)=3.\left(2x+1\right)\)
=>5x+5=6x+3
5x-6x=3-5
-x=-2
x=2
a) x=4/7 - 1/3=19/21
b) /x-5/=7 -->x-5=7 hoặc x-5=-7
--> x=12 hoặc x= -2
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
x = 2 nhé .
Em mới học lớp 5 thôi .
\(\frac{x+1}{2x+1}=\frac{0,5x+2}{x+3}\)
\(\Rightarrow\left(x+1\right)\left(x+3\right)=\left(2x+1\right)\left(0,5x+2\right)\)
\(\Rightarrow x^2+3x+x+3=x+4x+0,5x+2\)
\(\Rightarrow x^2+3x+x-x-4x-0,5x=2-3\)
\(\Rightarrow x^2-x=-1\)
\(\Rightarrow x\left(x-1\right)=-1\)
:vvv