Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, |x+1| +2x \(=\)-2
\(\Leftrightarrow\) |x+1|\(=\)-2-2x (*)
TH1: Nếu x+1\(\ge0\)\(\Leftrightarrow x\ge-1\)thì \(\left|x+1\right|=x+1\)
Thay vào (*) ta có:
\(x+1=-2-2x\)
\(\Leftrightarrow x+2x=-2-1\)
\(\Leftrightarrow3x=-3\)
\(\Leftrightarrow x=-1\)(TMĐK)
TH2: Nếu \(x+1< 0\Leftrightarrow x< -1\Rightarrow\left|x+1\right|=-\left(x+1\right)\)
Thay vào (*), ta có:
\(-x-1=\)\(-2-2x\)
\(\Leftrightarrow-x+2x=-2+1\)
\(\Leftrightarrow x=-1\)(kTMĐK)
Vậy S\(=\){-1}
b, \(x^2-6x+9=1\)
\(\Leftrightarrow x^2-2.3.x+3^2\)
\(\Leftrightarrow\left(x-3\right)^2=1\)
\(\Leftrightarrow\left(x-3\right)^2-1^2=0\)
\(\Leftrightarrow\left(x-3-1\right)\left(x-3+1\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy S\(=\){4;2}
a) |x + 1| + 2x = 2
\(\Rightarrow\) |3x + 1| = 2
\(\Rightarrow\) |3x| = 1
\(\Rightarrow\) |x| = 1 : 3 = \(\dfrac{1}{3}\)
\(\Rightarrow\) x = \(\dfrac{1}{3}\) hoặc \(-\dfrac{1}{3}\)
a: \(\Leftrightarrow\left|x+1\right|=-2x-2\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =-1\\\left(-2x-2\right)^2-\left(x+1\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< =-1\\3\left(x+1\right)^2=0\end{matrix}\right.\Leftrightarrow x=-1\)
b: \(\Leftrightarrow\left(x-3\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
a, \(x^2-9=0\Rightarrow x^2=9\Rightarrow x\pm3\)
b, \(\left(x-3\right)^2-25=0\Rightarrow\left(x-3\right)^2=25\)
\(\Rightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
c, \(\left(x-3\right)\left(2x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\2x=5\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
d, \(\left(x-3\right)x-2\left(x-3\right)=0\)
\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=3\\x=2\end{matrix}\right.\)
e, \(3x\left(x-1\right)-5\left(1-x\right)=0\)
\(\Rightarrow3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
g, \(x^2+6x-7=0\)
\(\Rightarrow x^2-x+7x-7=0\)
\(\Rightarrow x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)
h,\(2x^2+5x-7=0\)
\(\Rightarrow2x^2-2x+7x-7=0\)
\(\Rightarrow2x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Chúc bạn học tốt!!!
a) \(x^2-9=0\Leftrightarrow x^2=9\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\) vậy \(x=3;x=-3\)
b) \(\left(x-3\right)^2-25=0\Leftrightarrow\left(x-3\right)^2=25\Leftrightarrow\left\{{}\begin{matrix}x-3=5\\x-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
vậy \(x=8;x=-2\)
c) \(\left(x-3\right)\left(2x-5\right)=0\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\2x-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=\dfrac{5}{2}\end{matrix}\right.\)
vậy \(x=3;x=\dfrac{5}{2}\)
d)\(\left(x-3\right).x-2\left(x-3\right)=0\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\x=3\end{matrix}\right.\) vậy \(x=2;x=3\)
e) \(3x\left(x-1\right)-5\left(1-x\right)=0\Leftrightarrow\left(3x+5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-5}{3};x=1\)
câu e t thấy sai sai nhưng vẫn làm ; bn coi lại đề nha
g) \(x^2+6x-7=0\Leftrightarrow x^2-x+7x-7=0\)
\(\Leftrightarrow x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(x+7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-7\\x=1\end{matrix}\right.\) vậy \(x=-7;x=1\)
h) \(2x^2+5x-7=0\Leftrightarrow2x^2-2x+7x-7=0\)
\(\Leftrightarrow2x\left(x-1\right)+7\left(x-1\right)=0\Leftrightarrow\left(2x+7\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-7}{2}\\x=1\end{matrix}\right.\) vậy \(x=\dfrac{-7}{2};x=1\)
\(\left|x+5\right|=5\)
<=> \(\hept{\begin{cases}x+5=5\\x+5=-5\end{cases}}\)
<=> \(\hept{\begin{cases}x=0\\x=-10\end{cases}}\)
\(\left|x+1\right|+7=10\)
<=> \(\left|x+1\right|=3\)
<=> \(\hept{\begin{cases}x+1=3\\x+1=-3\end{cases}}\)
<=> \(\hept{\begin{cases}x=2\\x=-4\end{cases}}\)
\(\left|x-3\right|-6=5\)
<=> \(\left|x-3\right|=11\)
<=> \(\hept{\begin{cases}x-3=11\\x-3=-11\end{cases}}\)
<=> \(\hept{\begin{cases}x=14\\x=-8\end{cases}}\)
\(\left|x+2\right|-6\left(x-4\right)=20-6x\)
<=> \(\left|x+2\right|-6x+24=20-6x\)
<=> \(\left|x+2\right|=-4\)
<=> \(\hept{\begin{cases}x+2=-4\\x+2=4\end{cases}}\)
<=> \(\hept{\begin{cases}x=-2\\x=2\end{cases}}\)
a) \(|x+5|=5\)
\(\Rightarrow\orbr{\begin{cases}x+5=5\\x+5=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-10\end{cases}}\)
Vậy x = 0 hoặc x = -10
b) \(|x+1|+7=10\)
\(\Rightarrow|x+1|=10-7\)
\(\Rightarrow|x+1|=3\)
\(\Rightarrow\orbr{\begin{cases}x+1=3\\x+1=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}\)
Vậy x = 2 hoặc x = -4
c) \(|x-3|-6=5\)
\(\Rightarrow|x-3|=5+6\)
\(\Rightarrow|x-3|=11\)
\(\Rightarrow\orbr{\begin{cases}x-3=11\\x-3=-11\end{cases}}\Rightarrow\orbr{\begin{cases}x=14\\x=-8\end{cases}}\)
Vậy x = 14 hoặc x = -8
d) \(|x+2|-6\left(x-4\right)=20-6x\)
\(\Rightarrow|x+2|-6x+24=20-6x\)
\(\Rightarrow|x+2|=20-6x-24+6x\)
\(\Rightarrow|x+2|=\left(20-24\right)+\left(-6x+6x\right)\)
\(\Rightarrow|x+2|=-4\)
Vì \(|x|\ge0\)mà \(|x+2|=-4\)
\(\Rightarrow\)Không có giá trị x thỏa mãn
_Chúc bạn học tốt_
a: \(\Leftrightarrow\left|x+1\right|=-2x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(-2x-2\right)^2-\left(x+1\right)^2=0\\-2x-2>=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3\left(x+1\right)^2=0\\x< =-1\end{matrix}\right.\Leftrightarrow x=-1\)
b: \(\Leftrightarrow\left(x-3\right)^2=1\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\Leftrightarrow x\in\left\{4;2\right\}\)